Metamath Proof Explorer


Theorem flimval

Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimval.1 X=J
Assertion flimval JTopFranFilJfLimF=xX|neiJxFF𝒫X

Proof

Step Hyp Ref Expression
1 flimval.1 X=J
2 1 topopn JTopXJ
3 2 adantr JTopFranFilXJ
4 rabexg XJxX|neiJxFF𝒫XV
5 3 4 syl JTopFranFilxX|neiJxFF𝒫XV
6 simpl j=Jf=Fj=J
7 6 unieqd j=Jf=Fj=J
8 7 1 eqtr4di j=Jf=Fj=X
9 6 fveq2d j=Jf=Fneij=neiJ
10 9 fveq1d j=Jf=Fneijx=neiJx
11 simpr j=Jf=Ff=F
12 10 11 sseq12d j=Jf=FneijxfneiJxF
13 8 pweqd j=Jf=F𝒫j=𝒫X
14 11 13 sseq12d j=Jf=Ff𝒫jF𝒫X
15 12 14 anbi12d j=Jf=Fneijxff𝒫jneiJxFF𝒫X
16 8 15 rabeqbidv j=Jf=Fxj|neijxff𝒫j=xX|neiJxFF𝒫X
17 df-flim fLim=jTop,franFilxj|neijxff𝒫j
18 16 17 ovmpoga JTopFranFilxX|neiJxFF𝒫XVJfLimF=xX|neiJxFF𝒫X
19 5 18 mpd3an3 JTopFranFilJfLimF=xX|neiJxFF𝒫X