Metamath Proof Explorer


Theorem fltbccoprm

Description: A counterexample to FLT with A , B coprime also has B , C coprime. Proven from fltaccoprm using commutativity of addition. (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltabcoprmex.a φA
fltabcoprmex.b φB
fltabcoprmex.c φC
fltabcoprmex.n φN0
fltabcoprmex.1 φAN+BN=CN
fltaccoprm.1 φAgcdB=1
Assertion fltbccoprm φBgcdC=1

Proof

Step Hyp Ref Expression
1 fltabcoprmex.a φA
2 fltabcoprmex.b φB
3 fltabcoprmex.c φC
4 fltabcoprmex.n φN0
5 fltabcoprmex.1 φAN+BN=CN
6 fltaccoprm.1 φAgcdB=1
7 2 4 nnexpcld φBN
8 7 nncnd φBN
9 1 4 nnexpcld φAN
10 9 nncnd φAN
11 8 10 addcomd φBN+AN=AN+BN
12 11 5 eqtrd φBN+AN=CN
13 2 nnzd φB
14 1 nnzd φA
15 13 14 gcdcomd φBgcdA=AgcdB
16 15 6 eqtrd φBgcdA=1
17 2 1 3 4 12 16 fltaccoprm φBgcdC=1