Metamath Proof Explorer


Theorem flval2

Description: An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004)

Ref Expression
Assertion flval2 AA=ιx|xAyyAyx

Proof

Step Hyp Ref Expression
1 flle AAA
2 flge AyyAyA
3 2 biimpd AyyAyA
4 3 ralrimiva AyyAyA
5 flcl AA
6 zmax A∃!xxAyyAyx
7 breq1 x=AxAAA
8 breq2 x=AyxyA
9 8 imbi2d x=AyAyxyAyA
10 9 ralbidv x=AyyAyxyyAyA
11 7 10 anbi12d x=AxAyyAyxAAyyAyA
12 11 riota2 A∃!xxAyyAyxAAyyAyAιx|xAyyAyx=A
13 5 6 12 syl2anc AAAyyAyAιx|xAyyAyx=A
14 1 4 13 mpbi2and Aιx|xAyyAyx=A
15 14 eqcomd AA=ιx|xAyyAyx