Metamath Proof Explorer


Theorem flval3

Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Mario Carneiro, 6-Sep-2014)

Ref Expression
Assertion flval3 AA=supx|xA<

Proof

Step Hyp Ref Expression
1 ssrab2 x|xA
2 zssre
3 1 2 sstri x|xA
4 3 a1i Ax|xA
5 breq1 x=AxAAA
6 flcl AA
7 flle AAA
8 5 6 7 elrabd AAx|xA
9 8 ne0d Ax|xA
10 reflcl AA
11 breq1 x=zxAzA
12 11 elrab zx|xAzzA
13 flge AzzAzA
14 13 biimpd AzzAzA
15 14 expimpd AzzAzA
16 12 15 biimtrid Azx|xAzA
17 16 ralrimiv Azx|xAzA
18 brralrspcev Azx|xAzAyzx|xAzy
19 10 17 18 syl2anc Ayzx|xAzy
20 4 9 19 8 suprubd AAsupx|xA<
21 suprleub x|xAx|xAyzx|xAzyAsupx|xA<Azx|xAzA
22 4 9 19 10 21 syl31anc Asupx|xA<Azx|xAzA
23 17 22 mpbird Asupx|xA<A
24 4 9 19 suprcld Asupx|xA<
25 10 24 letri3d AA=supx|xA<Asupx|xA<supx|xA<A
26 20 23 25 mpbir2and AA=supx|xA<