Description: An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Mario Carneiro, 6-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | flval3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 | |
|
2 | zssre | |
|
3 | 1 2 | sstri | |
4 | 3 | a1i | |
5 | breq1 | |
|
6 | flcl | |
|
7 | flle | |
|
8 | 5 6 7 | elrabd | |
9 | 8 | ne0d | |
10 | reflcl | |
|
11 | breq1 | |
|
12 | 11 | elrab | |
13 | flge | |
|
14 | 13 | biimpd | |
15 | 14 | expimpd | |
16 | 12 15 | biimtrid | |
17 | 16 | ralrimiv | |
18 | brralrspcev | |
|
19 | 10 17 18 | syl2anc | |
20 | 4 9 19 8 | suprubd | |
21 | suprleub | |
|
22 | 4 9 19 10 21 | syl31anc | |
23 | 17 22 | mpbird | |
24 | 4 9 19 | suprcld | |
25 | 10 24 | letri3d | |
26 | 20 23 25 | mpbir2and | |