Metamath Proof Explorer


Theorem fmtnorec1

Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties , 22-Jul-2021. (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtnorec1 N 0 FermatNo N + 1 = FermatNo N 1 2 + 1

Proof

Step Hyp Ref Expression
1 peano2nn0 N 0 N + 1 0
2 fmtno N + 1 0 FermatNo N + 1 = 2 2 N + 1 + 1
3 1 2 syl N 0 FermatNo N + 1 = 2 2 N + 1 + 1
4 2nn0 2 0
5 nn0expcl 2 0 N 0 2 N 0
6 4 5 mpan N 0 2 N 0
7 nn0expcl 2 0 2 N 0 2 2 N 0
8 7 nn0cnd 2 0 2 N 0 2 2 N
9 4 6 8 sylancr N 0 2 2 N
10 pncan1 2 2 N 2 2 N + 1 - 1 = 2 2 N
11 9 10 syl N 0 2 2 N + 1 - 1 = 2 2 N
12 11 oveq1d N 0 2 2 N + 1 - 1 2 = 2 2 N 2
13 2cnne0 2 2 0
14 6 nn0zd N 0 2 N
15 2z 2
16 14 15 jctir N 0 2 N 2
17 expmulz 2 2 0 2 N 2 2 2 N 2 = 2 2 N 2
18 13 16 17 sylancr N 0 2 2 N 2 = 2 2 N 2
19 2cn 2
20 2ne0 2 0
21 nn0z N 0 N
22 expp1z 2 2 0 N 2 N + 1 = 2 N 2
23 19 20 21 22 mp3an12i N 0 2 N + 1 = 2 N 2
24 23 eqcomd N 0 2 N 2 = 2 N + 1
25 24 oveq2d N 0 2 2 N 2 = 2 2 N + 1
26 12 18 25 3eqtr2rd N 0 2 2 N + 1 = 2 2 N + 1 - 1 2
27 26 oveq1d N 0 2 2 N + 1 + 1 = 2 2 N + 1 - 1 2 + 1
28 fmtno N 0 FermatNo N = 2 2 N + 1
29 28 eqcomd N 0 2 2 N + 1 = FermatNo N
30 29 oveq1d N 0 2 2 N + 1 - 1 = FermatNo N 1
31 30 oveq1d N 0 2 2 N + 1 - 1 2 = FermatNo N 1 2
32 31 oveq1d N 0 2 2 N + 1 - 1 2 + 1 = FermatNo N 1 2 + 1
33 3 27 32 3eqtrd N 0 FermatNo N + 1 = FermatNo N 1 2 + 1