Metamath Proof Explorer


Theorem fmval

Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion fmval XABfBasYF:YXXFilMapFB=XfilGenranyBFy

Proof

Step Hyp Ref Expression
1 df-fm FilMap=xV,fVbfBasdomfxfilGenranybfy
2 1 a1i XABfBasYF:YXFilMap=xV,fVbfBasdomfxfilGenranybfy
3 dmeq f=Fdomf=domF
4 3 fveq2d f=FfBasdomf=fBasdomF
5 4 adantl x=Xf=FfBasdomf=fBasdomF
6 id x=Xx=X
7 imaeq1 f=Ffy=Fy
8 7 mpteq2dv f=Fybfy=ybFy
9 8 rneqd f=Franybfy=ranybFy
10 6 9 oveqan12d x=Xf=FxfilGenranybfy=XfilGenranybFy
11 5 10 mpteq12dv x=Xf=FbfBasdomfxfilGenranybfy=bfBasdomFXfilGenranybFy
12 fdm F:YXdomF=Y
13 12 fveq2d F:YXfBasdomF=fBasY
14 13 mpteq1d F:YXbfBasdomFXfilGenranybFy=bfBasYXfilGenranybFy
15 14 3ad2ant3 XABfBasYF:YXbfBasdomFXfilGenranybFy=bfBasYXfilGenranybFy
16 11 15 sylan9eqr XABfBasYF:YXx=Xf=FbfBasdomfxfilGenranybfy=bfBasYXfilGenranybFy
17 elex XAXV
18 17 3ad2ant1 XABfBasYF:YXXV
19 simp3 XABfBasYF:YXF:YX
20 elfvdm BfBasYYdomfBas
21 20 3ad2ant2 XABfBasYF:YXYdomfBas
22 19 21 fexd XABfBasYF:YXFV
23 fvex fBasYV
24 23 mptex bfBasYXfilGenranybFyV
25 24 a1i XABfBasYF:YXbfBasYXfilGenranybFyV
26 2 16 18 22 25 ovmpod XABfBasYF:YXXFilMapF=bfBasYXfilGenranybFy
27 26 fveq1d XABfBasYF:YXXFilMapFB=bfBasYXfilGenranybFyB
28 mpteq1 b=BybFy=yBFy
29 28 rneqd b=BranybFy=ranyBFy
30 29 oveq2d b=BXfilGenranybFy=XfilGenranyBFy
31 eqid bfBasYXfilGenranybFy=bfBasYXfilGenranybFy
32 ovex XfilGenranyBFyV
33 30 31 32 fvmpt BfBasYbfBasYXfilGenranybFyB=XfilGenranyBFy
34 33 3ad2ant2 XABfBasYF:YXbfBasYXfilGenranybFyB=XfilGenranyBFy
35 27 34 eqtrd XABfBasYF:YXXFilMapFB=XfilGenranyBFy