Metamath Proof Explorer


Theorem fness

Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Hypotheses fness.1 X = A
fness.2 Y = B
Assertion fness B C A B X = Y A Fne B

Proof

Step Hyp Ref Expression
1 fness.1 X = A
2 fness.2 Y = B
3 simp3 B C A B X = Y X = Y
4 ssel2 A B x A x B
5 4 3adant3 A B x A y x x B
6 simp3 A B x A y x y x
7 ssid x x
8 6 7 jctir A B x A y x y x x x
9 elequ2 z = x y z y x
10 sseq1 z = x z x x x
11 9 10 anbi12d z = x y z z x y x x x
12 11 rspcev x B y x x x z B y z z x
13 5 8 12 syl2anc A B x A y x z B y z z x
14 13 3expib A B x A y x z B y z z x
15 14 ralrimivv A B x A y x z B y z z x
16 15 3ad2ant2 B C A B X = Y x A y x z B y z z x
17 1 2 isfne2 B C A Fne B X = Y x A y x z B y z z x
18 17 3ad2ant1 B C A B X = Y A Fne B X = Y x A y x z B y z z x
19 3 16 18 mpbir2and B C A B X = Y A Fne B