Metamath Proof Explorer


Theorem fness

Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Hypotheses fness.1 X=A
fness.2 Y=B
Assertion fness BCABX=YAFneB

Proof

Step Hyp Ref Expression
1 fness.1 X=A
2 fness.2 Y=B
3 simp3 BCABX=YX=Y
4 ssel2 ABxAxB
5 4 3adant3 ABxAyxxB
6 simp3 ABxAyxyx
7 ssid xx
8 6 7 jctir ABxAyxyxxx
9 elequ2 z=xyzyx
10 sseq1 z=xzxxx
11 9 10 anbi12d z=xyzzxyxxx
12 11 rspcev xByxxxzByzzx
13 5 8 12 syl2anc ABxAyxzByzzx
14 13 3expib ABxAyxzByzzx
15 14 ralrimivv ABxAyxzByzzx
16 15 3ad2ant2 BCABX=YxAyxzByzzx
17 1 2 isfne2 BCAFneBX=YxAyxzByzzx
18 17 3ad2ant1 BCABX=YAFneBX=YxAyxzByzzx
19 3 16 18 mpbir2and BCABX=YAFneB