Metamath Proof Explorer


Theorem fnfocofob

Description: If the domain of a function G equals the range of a function F , then the composition ( G o. F ) is surjective iff G is surjective. (Contributed by GL and AV, 29-Sep-2024)

Ref Expression
Assertion fnfocofob FFnAG:BCranF=BGF:AontoCG:BontoC

Proof

Step Hyp Ref Expression
1 cnvimarndm F-1ranF=domF
2 fndm FFnAdomF=A
3 2 3ad2ant1 FFnAG:BCranF=BdomF=A
4 1 3 eqtr2id FFnAG:BCranF=BA=F-1ranF
5 imaeq2 ranF=BF-1ranF=F-1B
6 5 3ad2ant3 FFnAG:BCranF=BF-1ranF=F-1B
7 4 6 eqtrd FFnAG:BCranF=BA=F-1B
8 foeq2 A=F-1BGF:AontoCGF:F-1BontoC
9 7 8 syl FFnAG:BCranF=BGF:AontoCGF:F-1BontoC
10 fnfun FFnAFunF
11 id G:BCG:BC
12 eqimss2 ranF=BBranF
13 funfocofob FunFG:BCBranFGF:F-1BontoCG:BontoC
14 10 11 12 13 syl3an FFnAG:BCranF=BGF:F-1BontoCG:BontoC
15 9 14 bitrd FFnAG:BCranF=BGF:AontoCG:BontoC