Metamath Proof Explorer


Theorem fnlimfvre2

Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimfvre2.p m φ
fnlimfvre2.m _ m F
fnlimfvre2.n _ x F
fnlimfvre2.z Z = M
fnlimfvre2.f φ m Z F m : dom F m
fnlimfvre2.d D = x n Z m n dom F m | m Z F m x dom
fnlimfvre2.g G = x D m Z F m x
fnlimfvre2.x φ X D
Assertion fnlimfvre2 φ G X

Proof

Step Hyp Ref Expression
1 fnlimfvre2.p m φ
2 fnlimfvre2.m _ m F
3 fnlimfvre2.n _ x F
4 fnlimfvre2.z Z = M
5 fnlimfvre2.f φ m Z F m : dom F m
6 fnlimfvre2.d D = x n Z m n dom F m | m Z F m x dom
7 fnlimfvre2.g G = x D m Z F m x
8 fnlimfvre2.x φ X D
9 nfrab1 _ x x n Z m n dom F m | m Z F m x dom
10 6 9 nfcxfr _ x D
11 nfcv _ z D
12 nfcv _ z m Z F m x
13 nfcv _ x
14 nfcv _ x Z
15 nfcv _ x m
16 3 15 nffv _ x F m
17 nfcv _ x z
18 16 17 nffv _ x F m z
19 14 18 nfmpt _ x m Z F m z
20 13 19 nffv _ x m Z F m z
21 fveq2 x = z F m x = F m z
22 21 mpteq2dv x = z m Z F m x = m Z F m z
23 22 fveq2d x = z m Z F m x = m Z F m z
24 10 11 12 20 23 cbvmptf x D m Z F m x = z D m Z F m z
25 7 24 eqtri G = z D m Z F m z
26 fveq2 X = z F m X = F m z
27 26 mpteq2dv X = z m Z F m X = m Z F m z
28 eqcom X = z z = X
29 28 imbi1i X = z m Z F m X = m Z F m z z = X m Z F m X = m Z F m z
30 eqcom m Z F m X = m Z F m z m Z F m z = m Z F m X
31 30 imbi2i z = X m Z F m X = m Z F m z z = X m Z F m z = m Z F m X
32 29 31 bitri X = z m Z F m X = m Z F m z z = X m Z F m z = m Z F m X
33 27 32 mpbi z = X m Z F m z = m Z F m X
34 33 fveq2d z = X m Z F m z = m Z F m X
35 fvexd φ m Z F m X V
36 25 34 8 35 fvmptd3 φ G X = m Z F m X
37 1 2 3 4 5 6 8 fnlimfvre φ m Z F m X
38 36 37 eqeltrd φ G X