Metamath Proof Explorer


Theorem fo1stres

Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008)

Ref Expression
Assertion fo1stres B1stA×B:A×BontoA

Proof

Step Hyp Ref Expression
1 n0 ByyB
2 opelxp xyA×BxAyB
3 fvres xyA×B1stA×Bxy=1stxy
4 vex xV
5 vex yV
6 4 5 op1st 1stxy=x
7 3 6 eqtr2di xyA×Bx=1stA×Bxy
8 f1stres 1stA×B:A×BA
9 ffn 1stA×B:A×BA1stA×BFnA×B
10 8 9 ax-mp 1stA×BFnA×B
11 fnfvelrn 1stA×BFnA×BxyA×B1stA×Bxyran1stA×B
12 10 11 mpan xyA×B1stA×Bxyran1stA×B
13 7 12 eqeltrd xyA×Bxran1stA×B
14 2 13 sylbir xAyBxran1stA×B
15 14 expcom yBxAxran1stA×B
16 15 exlimiv yyBxAxran1stA×B
17 1 16 sylbi BxAxran1stA×B
18 17 ssrdv BAran1stA×B
19 frn 1stA×B:A×BAran1stA×BA
20 8 19 ax-mp ran1stA×BA
21 18 20 jctil Bran1stA×BAAran1stA×B
22 eqss ran1stA×B=Aran1stA×BAAran1stA×B
23 21 22 sylibr Bran1stA×B=A
24 23 8 jctil B1stA×B:A×BAran1stA×B=A
25 dffo2 1stA×B:A×BontoA1stA×B:A×BAran1stA×B=A
26 24 25 sylibr B1stA×B:A×BontoA