Metamath Proof Explorer


Theorem fo2ndres

Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008)

Ref Expression
Assertion fo2ndres A2ndA×B:A×BontoB

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 opelxp xyA×BxAyB
3 fvres xyA×B2ndA×Bxy=2ndxy
4 vex xV
5 vex yV
6 4 5 op2nd 2ndxy=y
7 3 6 eqtr2di xyA×By=2ndA×Bxy
8 f2ndres 2ndA×B:A×BB
9 ffn 2ndA×B:A×BB2ndA×BFnA×B
10 8 9 ax-mp 2ndA×BFnA×B
11 fnfvelrn 2ndA×BFnA×BxyA×B2ndA×Bxyran2ndA×B
12 10 11 mpan xyA×B2ndA×Bxyran2ndA×B
13 7 12 eqeltrd xyA×Byran2ndA×B
14 2 13 sylbir xAyByran2ndA×B
15 14 ex xAyByran2ndA×B
16 15 exlimiv xxAyByran2ndA×B
17 1 16 sylbi AyByran2ndA×B
18 17 ssrdv ABran2ndA×B
19 frn 2ndA×B:A×BBran2ndA×BB
20 8 19 ax-mp ran2ndA×BB
21 18 20 jctil Aran2ndA×BBBran2ndA×B
22 eqss ran2ndA×B=Bran2ndA×BBBran2ndA×B
23 21 22 sylibr Aran2ndA×B=B
24 23 8 jctil A2ndA×B:A×BBran2ndA×B=B
25 dffo2 2ndA×B:A×BontoB2ndA×B:A×BBran2ndA×B=B
26 24 25 sylibr A2ndA×B:A×BontoB