Metamath Proof Explorer


Theorem foco2

Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion foco2 F:BCG:ABFG:AontoCF:BontoC

Proof

Step Hyp Ref Expression
1 foelrn FG:AontoCyCzAy=FGz
2 ffvelcdm G:ABzAGzB
3 fvco3 G:ABzAFGz=FGz
4 fveq2 x=GzFx=FGz
5 4 rspceeqv GzBFGz=FGzxBFGz=Fx
6 2 3 5 syl2anc G:ABzAxBFGz=Fx
7 eqeq1 y=FGzy=FxFGz=Fx
8 7 rexbidv y=FGzxBy=FxxBFGz=Fx
9 6 8 syl5ibrcom G:ABzAy=FGzxBy=Fx
10 9 rexlimdva G:ABzAy=FGzxBy=Fx
11 1 10 syl5 G:ABFG:AontoCyCxBy=Fx
12 11 impl G:ABFG:AontoCyCxBy=Fx
13 12 ralrimiva G:ABFG:AontoCyCxBy=Fx
14 13 anim2i F:BCG:ABFG:AontoCF:BCyCxBy=Fx
15 3anass F:BCG:ABFG:AontoCF:BCG:ABFG:AontoC
16 dffo3 F:BontoCF:BCyCxBy=Fx
17 14 15 16 3imtr4i F:BCG:ABFG:AontoCF:BontoC