Metamath Proof Explorer


Theorem footeq

Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses isperp.p P=BaseG
isperp.d -˙=distG
isperp.i I=ItvG
isperp.l L=Line𝒢G
isperp.g φG𝒢Tarski
isperp.a φAranL
footeq.x φXA
footeq.y φYA
footeq.z φZP
footeq.1 φXLZ𝒢GA
footeq.2 φYLZ𝒢GA
Assertion footeq φX=Y

Proof

Step Hyp Ref Expression
1 isperp.p P=BaseG
2 isperp.d -˙=distG
3 isperp.i I=ItvG
4 isperp.l L=Line𝒢G
5 isperp.g φG𝒢Tarski
6 isperp.a φAranL
7 footeq.x φXA
8 footeq.y φYA
9 footeq.z φZP
10 footeq.1 φXLZ𝒢GA
11 footeq.2 φYLZ𝒢GA
12 oveq2 x=XZLx=ZLX
13 12 breq1d x=XZLx𝒢GAZLX𝒢GA
14 oveq2 x=YZLx=ZLY
15 14 breq1d x=YZLx𝒢GAZLY𝒢GA
16 1 2 3 4 5 6 7 9 10 footne φ¬ZA
17 1 2 3 4 5 6 9 16 foot φ∃!xAZLx𝒢GA
18 1 4 3 5 6 7 tglnpt φXP
19 4 5 10 perpln1 φXLZranL
20 1 3 4 5 18 9 19 tglnne φXZ
21 1 3 4 5 18 9 20 tglinecom φXLZ=ZLX
22 21 10 eqbrtrrd φZLX𝒢GA
23 1 4 3 5 6 8 tglnpt φYP
24 4 5 11 perpln1 φYLZranL
25 1 3 4 5 23 9 24 tglnne φYZ
26 1 3 4 5 23 9 25 tglinecom φYLZ=ZLY
27 26 11 eqbrtrrd φZLY𝒢GA
28 13 15 17 7 8 22 27 reu2eqd φX=Y