Metamath Proof Explorer


Theorem fourierdlem3

Description: Membership in a partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem3.1 P=mpππ0m|p0=πpm=πi0..^mpi<pi+1
Assertion fourierdlem3 MQPMQππ0MQ0=πQM=πi0..^MQi<Qi+1

Proof

Step Hyp Ref Expression
1 fourierdlem3.1 P=mpππ0m|p0=πpm=πi0..^mpi<pi+1
2 oveq2 m=M0m=0M
3 2 oveq2d m=Mππ0m=ππ0M
4 fveqeq2 m=Mpm=πpM=π
5 4 anbi2d m=Mp0=πpm=πp0=πpM=π
6 oveq2 m=M0..^m=0..^M
7 6 raleqdv m=Mi0..^mpi<pi+1i0..^Mpi<pi+1
8 5 7 anbi12d m=Mp0=πpm=πi0..^mpi<pi+1p0=πpM=πi0..^Mpi<pi+1
9 3 8 rabeqbidv m=Mpππ0m|p0=πpm=πi0..^mpi<pi+1=pππ0M|p0=πpM=πi0..^Mpi<pi+1
10 ovex ππ0MV
11 10 rabex pππ0M|p0=πpM=πi0..^Mpi<pi+1V
12 9 1 11 fvmpt MPM=pππ0M|p0=πpM=πi0..^Mpi<pi+1
13 12 eleq2d MQPMQpππ0M|p0=πpM=πi0..^Mpi<pi+1
14 fveq1 p=Qp0=Q0
15 14 eqeq1d p=Qp0=πQ0=π
16 fveq1 p=QpM=QM
17 16 eqeq1d p=QpM=πQM=π
18 15 17 anbi12d p=Qp0=πpM=πQ0=πQM=π
19 fveq1 p=Qpi=Qi
20 fveq1 p=Qpi+1=Qi+1
21 19 20 breq12d p=Qpi<pi+1Qi<Qi+1
22 21 ralbidv p=Qi0..^Mpi<pi+1i0..^MQi<Qi+1
23 18 22 anbi12d p=Qp0=πpM=πi0..^Mpi<pi+1Q0=πQM=πi0..^MQi<Qi+1
24 23 elrab Qpππ0M|p0=πpM=πi0..^Mpi<pi+1Qππ0MQ0=πQM=πi0..^MQi<Qi+1
25 13 24 bitrdi MQPMQππ0MQ0=πQM=πi0..^MQi<Qi+1