Metamath Proof Explorer


Theorem fovcld

Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007) (Revised by Thierry Arnoux, 17-Feb-2017)

Ref Expression
Hypothesis fovcld.1 φF:R×SC
Assertion fovcld φARBSAFBC

Proof

Step Hyp Ref Expression
1 fovcld.1 φF:R×SC
2 3simpc φARBSARBS
3 ffnov F:R×SCFFnR×SxRySxFyC
4 3 simprbi F:R×SCxRySxFyC
5 1 4 syl φxRySxFyC
6 5 3ad2ant1 φARBSxRySxFyC
7 oveq1 x=AxFy=AFy
8 7 eleq1d x=AxFyCAFyC
9 oveq2 y=BAFy=AFB
10 9 eleq1d y=BAFyCAFBC
11 8 10 rspc2v ARBSxRySxFyCAFBC
12 2 6 11 sylc φARBSAFBC