Description: Functions defined by well-founded recursion over a partial order are identical up to relation, domain, and characteristic function. This version of frr3g does not require infinity. (Contributed by Scott Fenton, 24-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | fpr3g | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | |
|
2 | r19.21v | |
|
3 | simprll | |
|
4 | simprrl | |
|
5 | predss | |
|
6 | fvreseq | |
|
7 | 5 6 | mpan2 | |
8 | 3 4 7 | syl2anc | |
9 | 8 | biimp3ar | |
10 | 9 | oveq2d | |
11 | fveq2 | |
|
12 | id | |
|
13 | predeq3 | |
|
14 | 13 | reseq2d | |
15 | 12 14 | oveq12d | |
16 | 11 15 | eqeq12d | |
17 | simp2lr | |
|
18 | simp1 | |
|
19 | 16 17 18 | rspcdva | |
20 | fveq2 | |
|
21 | 13 | reseq2d | |
22 | 12 21 | oveq12d | |
23 | 20 22 | eqeq12d | |
24 | simp2rr | |
|
25 | 23 24 18 | rspcdva | |
26 | 10 19 25 | 3eqtr4d | |
27 | 26 | 3exp | |
28 | 27 | a2d | |
29 | 2 28 | biimtrid | |
30 | fveq2 | |
|
31 | fveq2 | |
|
32 | 30 31 | eqeq12d | |
33 | 32 | imbi2d | |
34 | 29 33 | frpoins2g | |
35 | r19.21v | |
|
36 | 34 35 | sylib | |
37 | 36 | 3impib | |
38 | simp2l | |
|
39 | simp3l | |
|
40 | eqfnfv2 | |
|
41 | 38 39 40 | syl2anc | |
42 | 1 37 41 | mpbir2and | |