Metamath Proof Explorer


Theorem fpr3g

Description: Functions defined by well-founded recursion over a partial order are identical up to relation, domain, and characteristic function. This version of frr3g does not require infinity. (Contributed by Scott Fenton, 24-Aug-2022)

Ref Expression
Assertion fpr3g RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=G

Proof

Step Hyp Ref Expression
1 eqidd RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyA=A
2 r19.21v wPredRAzFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFw=GwFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=Gw
3 simprll zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFFnA
4 simprrl zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyGFnA
5 predss PredRAzA
6 fvreseq FFnAGFnAPredRAzAFPredRAz=GPredRAzwPredRAzFw=Gw
7 5 6 mpan2 FFnAGFnAFPredRAz=GPredRAzwPredRAzFw=Gw
8 3 4 7 syl2anc zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFPredRAz=GPredRAzwPredRAzFw=Gw
9 8 biimp3ar zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwFPredRAz=GPredRAz
10 9 oveq2d zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwzHFPredRAz=zHGPredRAz
11 fveq2 y=zFy=Fz
12 id y=zy=z
13 predeq3 y=zPredRAy=PredRAz
14 13 reseq2d y=zFPredRAy=FPredRAz
15 12 14 oveq12d y=zyHFPredRAy=zHFPredRAz
16 11 15 eqeq12d y=zFy=yHFPredRAyFz=zHFPredRAz
17 simp2lr zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwyAFy=yHFPredRAy
18 simp1 zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwzA
19 16 17 18 rspcdva zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwFz=zHFPredRAz
20 fveq2 y=zGy=Gz
21 13 reseq2d y=zGPredRAy=GPredRAz
22 12 21 oveq12d y=zyHGPredRAy=zHGPredRAz
23 20 22 eqeq12d y=zGy=yHGPredRAyGz=zHGPredRAz
24 simp2rr zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwyAGy=yHGPredRAy
25 23 24 18 rspcdva zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwGz=zHGPredRAz
26 10 19 25 3eqtr4d zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwFz=Gz
27 26 3exp zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwFz=Gz
28 27 a2d zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAywPredRAzFw=GwFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFz=Gz
29 2 28 biimtrid zAwPredRAzFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFw=GwFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFz=Gz
30 fveq2 z=wFz=Fw
31 fveq2 z=wGz=Gw
32 30 31 eqeq12d z=wFz=GzFw=Gw
33 32 imbi2d z=wFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFz=GzFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFw=Gw
34 29 33 frpoins2g RFrARPoARSeAzAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFz=Gz
35 r19.21v zAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFz=GzFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyzAFz=Gz
36 34 35 sylib RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyzAFz=Gz
37 36 3impib RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyzAFz=Gz
38 simp2l RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyFFnA
39 simp3l RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyGFnA
40 eqfnfv2 FFnAGFnAF=GA=AzAFz=Gz
41 38 39 40 syl2anc RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=GA=AzAFz=Gz
42 1 37 41 mpbir2and RFrARPoARSeAFFnAyAFy=yHFPredRAyGFnAyAGy=yHGPredRAyF=G