Description: Lemma for well-founded recursion with a partial order. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | fprlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | 1 | elpred | |
3 | 2 | elv | |
4 | simprl | |
|
5 | simpll2 | |
|
6 | 5 | adantr | |
7 | simprl | |
|
8 | 7 | adantr | |
9 | simpllr | |
|
10 | 4 8 9 | 3jca | |
11 | 6 10 | jca | |
12 | simprr | |
|
13 | simplrr | |
|
14 | 12 13 | jca | |
15 | potr | |
|
16 | 11 14 15 | sylc | |
17 | 4 16 | jca | |
18 | 17 | ex | |
19 | vex | |
|
20 | 19 | elpred | |
21 | 20 | elv | |
22 | 19 | elpred | |
23 | 22 | elv | |
24 | 18 21 23 | 3imtr4g | |
25 | 24 | ssrdv | |
26 | 3 25 | sylan2b | |
27 | 26 | ralrimiva | |