Metamath Proof Explorer


Theorem fprlem2

Description: Lemma for well-founded recursion with a partial order. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023)

Ref Expression
Assertion fprlem2 RFrARPoARSeAzAwPredRAzPredRAwPredRAz

Proof

Step Hyp Ref Expression
1 vex wV
2 1 elpred zVwPredRAzwAwRz
3 2 elv wPredRAzwAwRz
4 simprl RFrARPoARSeAzAwAwRzxAxRwxA
5 simpll2 RFrARPoARSeAzAwAwRzRPoA
6 5 adantr RFrARPoARSeAzAwAwRzxAxRwRPoA
7 simprl RFrARPoARSeAzAwAwRzwA
8 7 adantr RFrARPoARSeAzAwAwRzxAxRwwA
9 simpllr RFrARPoARSeAzAwAwRzxAxRwzA
10 4 8 9 3jca RFrARPoARSeAzAwAwRzxAxRwxAwAzA
11 6 10 jca RFrARPoARSeAzAwAwRzxAxRwRPoAxAwAzA
12 simprr RFrARPoARSeAzAwAwRzxAxRwxRw
13 simplrr RFrARPoARSeAzAwAwRzxAxRwwRz
14 12 13 jca RFrARPoARSeAzAwAwRzxAxRwxRwwRz
15 potr RPoAxAwAzAxRwwRzxRz
16 11 14 15 sylc RFrARPoARSeAzAwAwRzxAxRwxRz
17 4 16 jca RFrARPoARSeAzAwAwRzxAxRwxAxRz
18 17 ex RFrARPoARSeAzAwAwRzxAxRwxAxRz
19 vex xV
20 19 elpred wVxPredRAwxAxRw
21 20 elv xPredRAwxAxRw
22 19 elpred zVxPredRAzxAxRz
23 22 elv xPredRAzxAxRz
24 18 21 23 3imtr4g RFrARPoARSeAzAwAwRzxPredRAwxPredRAz
25 24 ssrdv RFrARPoARSeAzAwAwRzPredRAwPredRAz
26 3 25 sylan2b RFrARPoARSeAzAwPredRAzPredRAwPredRAz
27 26 ralrimiva RFrARPoARSeAzAwPredRAzPredRAwPredRAz