Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprod0.kph | |
|
fprod0.kc | |
||
fprod0.a | |
||
fprod0.b | |
||
fprod0.bc | |
||
fprod0.k | |
||
fprod0.c | |
||
Assertion | fprod0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprod0.kph | |
|
2 | fprod0.kc | |
|
3 | fprod0.a | |
|
4 | fprod0.b | |
|
5 | fprod0.bc | |
|
6 | fprod0.k | |
|
7 | fprod0.c | |
|
8 | 2 | a1i | |
9 | 5 | adantl | |
10 | 1 8 3 4 6 9 | fprodsplit1f | |
11 | 7 | oveq1d | |
12 | diffi | |
|
13 | 3 12 | syl | |
14 | simpl | |
|
15 | eldifi | |
|
16 | 15 | adantl | |
17 | 14 16 4 | syl2anc | |
18 | 1 13 17 | fprodclf | |
19 | 18 | mul02d | |
20 | 10 11 19 | 3eqtrd | |