Metamath Proof Explorer


Theorem fproddivf

Description: The quotient of two finite products. A version of fproddiv using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fproddivf.kph kφ
fproddivf.a φAFin
fproddivf.b φkAB
fproddivf.c φkAC
fproddivf.ne0 φkAC0
Assertion fproddivf φkABC=kABkAC

Proof

Step Hyp Ref Expression
1 fproddivf.kph kφ
2 fproddivf.a φAFin
3 fproddivf.b φkAB
4 fproddivf.c φkAC
5 fproddivf.ne0 φkAC0
6 nfcv _jBC
7 nfcsb1v _kj/kB
8 nfcv _k÷
9 nfcsb1v _kj/kC
10 7 8 9 nfov _kj/kBj/kC
11 csbeq1a k=jB=j/kB
12 csbeq1a k=jC=j/kC
13 11 12 oveq12d k=jBC=j/kBj/kC
14 6 10 13 cbvprodi kABC=jAj/kBj/kC
15 14 a1i φkABC=jAj/kBj/kC
16 nfvd φkjA
17 1 16 nfan1 kφjA
18 7 nfel1 kj/kB
19 17 18 nfim kφjAj/kB
20 eleq1w k=jkAjA
21 20 anbi2d k=jφkAφjA
22 11 eleq1d k=jBj/kB
23 21 22 imbi12d k=jφkABφjAj/kB
24 19 23 3 chvarfv φjAj/kB
25 9 nfel1 kj/kC
26 17 25 nfim kφjAj/kC
27 12 eleq1d k=jCj/kC
28 21 27 imbi12d k=jφkACφjAj/kC
29 26 28 4 chvarfv φjAj/kC
30 nfcv _k0
31 9 30 nfne kj/kC0
32 17 31 nfim kφjAj/kC0
33 12 neeq1d k=jC0j/kC0
34 21 33 imbi12d k=jφkAC0φjAj/kC0
35 32 34 5 chvarfv φjAj/kC0
36 2 24 29 35 fproddiv φjAj/kBj/kC=jAj/kBjAj/kC
37 nfcv _jB
38 37 7 11 cbvprodi kAB=jAj/kB
39 38 eqcomi jAj/kB=kAB
40 39 a1i φjAj/kB=kAB
41 nfcv _jC
42 12 equcoms j=kC=j/kC
43 42 eqcomd j=kj/kC=C
44 9 41 43 cbvprodi jAj/kC=kAC
45 44 a1i φjAj/kC=kAC
46 40 45 oveq12d φjAj/kBjAj/kC=kABkAC
47 15 36 46 3eqtrd φkABC=kABkAC