Description: The quotient of two finite products. A version of fproddiv using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fproddivf.kph | |
|
fproddivf.a | |
||
fproddivf.b | |
||
fproddivf.c | |
||
fproddivf.ne0 | |
||
Assertion | fproddivf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fproddivf.kph | |
|
2 | fproddivf.a | |
|
3 | fproddivf.b | |
|
4 | fproddivf.c | |
|
5 | fproddivf.ne0 | |
|
6 | nfcv | |
|
7 | nfcsb1v | |
|
8 | nfcv | |
|
9 | nfcsb1v | |
|
10 | 7 8 9 | nfov | |
11 | csbeq1a | |
|
12 | csbeq1a | |
|
13 | 11 12 | oveq12d | |
14 | 6 10 13 | cbvprodi | |
15 | 14 | a1i | |
16 | nfvd | |
|
17 | 1 16 | nfan1 | |
18 | 7 | nfel1 | |
19 | 17 18 | nfim | |
20 | eleq1w | |
|
21 | 20 | anbi2d | |
22 | 11 | eleq1d | |
23 | 21 22 | imbi12d | |
24 | 19 23 3 | chvarfv | |
25 | 9 | nfel1 | |
26 | 17 25 | nfim | |
27 | 12 | eleq1d | |
28 | 21 27 | imbi12d | |
29 | 26 28 4 | chvarfv | |
30 | nfcv | |
|
31 | 9 30 | nfne | |
32 | 17 31 | nfim | |
33 | 12 | neeq1d | |
34 | 21 33 | imbi12d | |
35 | 32 34 5 | chvarfv | |
36 | 2 24 29 35 | fproddiv | |
37 | nfcv | |
|
38 | 37 7 11 | cbvprodi | |
39 | 38 | eqcomi | |
40 | 39 | a1i | |
41 | nfcv | |
|
42 | 12 | equcoms | |
43 | 42 | eqcomd | |
44 | 9 41 43 | cbvprodi | |
45 | 44 | a1i | |
46 | 40 45 | oveq12d | |
47 | 15 36 46 | 3eqtrd | |