Metamath Proof Explorer


Theorem fpwwe2lem3

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 19-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2lem3.4 φXWR
Assertion fpwwe2lem3 φBXR-1BFRR-1B×R-1B=B

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2lem3.4 φXWR
4 1 2 fpwwe2lem2 φXWRXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
5 3 4 mpbid φXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
6 5 simprrd φyX[˙R-1y/u]˙uFRu×u=y
7 sneq y=By=B
8 7 imaeq2d y=BR-1y=R-1B
9 eqeq2 y=BuFRu×u=yuFRu×u=B
10 8 9 sbceqbid y=B[˙R-1y/u]˙uFRu×u=y[˙R-1B/u]˙uFRu×u=B
11 10 rspccva yX[˙R-1y/u]˙uFRu×u=yBX[˙R-1B/u]˙uFRu×u=B
12 6 11 sylan φBX[˙R-1B/u]˙uFRu×u=B
13 cnvimass R-1BdomR
14 1 relopabiv RelW
15 14 brrelex2i XWRRV
16 dmexg RVdomRV
17 3 15 16 3syl φdomRV
18 ssexg R-1BdomRdomRVR-1BV
19 13 17 18 sylancr φR-1BV
20 id u=R-1Bu=R-1B
21 20 sqxpeqd u=R-1Bu×u=R-1B×R-1B
22 21 ineq2d u=R-1BRu×u=RR-1B×R-1B
23 20 22 oveq12d u=R-1BuFRu×u=R-1BFRR-1B×R-1B
24 23 eqeq1d u=R-1BuFRu×u=BR-1BFRR-1B×R-1B=B
25 24 sbcieg R-1BV[˙R-1B/u]˙uFRu×u=BR-1BFRR-1B×R-1B=B
26 19 25 syl φ[˙R-1B/u]˙uFRu×u=BR-1BFRR-1B×R-1B=B
27 26 adantr φBX[˙R-1B/u]˙uFRu×u=BR-1BFRR-1B×R-1B=B
28 12 27 mpbid φBXR-1BFRR-1B×R-1B=B