Metamath Proof Explorer


Theorem fpwwe2lem4

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
Assertion fpwwe2lem4 φXARX×XRWeXXFRA

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 2 adantr φXARX×XRWeXAV
5 simpr1 φXARX×XRWeXXA
6 4 5 ssexd φXARX×XRWeXXV
7 6 6 xpexd φXARX×XRWeXX×XV
8 simpr2 φXARX×XRWeXRX×X
9 7 8 ssexd φXARX×XRWeXRV
10 6 9 jca φXARX×XRWeXXVRV
11 sseq1 x=XxAXA
12 xpeq12 x=Xx=Xx×x=X×X
13 12 anidms x=Xx×x=X×X
14 13 sseq2d x=Xrx×xrX×X
15 weeq2 x=XrWexrWeX
16 11 14 15 3anbi123d x=XxArx×xrWexXArX×XrWeX
17 16 anbi2d x=XφxArx×xrWexφXArX×XrWeX
18 oveq1 x=XxFr=XFr
19 18 eleq1d x=XxFrAXFrA
20 17 19 imbi12d x=XφxArx×xrWexxFrAφXArX×XrWeXXFrA
21 sseq1 r=RrX×XRX×X
22 weeq1 r=RrWeXRWeX
23 21 22 3anbi23d r=RXArX×XrWeXXARX×XRWeX
24 23 anbi2d r=RφXArX×XrWeXφXARX×XRWeX
25 oveq2 r=RXFr=XFR
26 25 eleq1d r=RXFrAXFRA
27 24 26 imbi12d r=RφXArX×XrWeXXFrAφXARX×XRWeXXFRA
28 20 27 3 vtocl2g XVRVφXARX×XRWeXXFRA
29 10 28 mpcom φXARX×XRWeXXFRA