Metamath Proof Explorer


Theorem fr3nr

Description: A well-founded relation has no 3-cycle loops. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 10-Apr-1994) (Revised by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion fr3nr RFrABACADA¬BRCCRDDRB

Proof

Step Hyp Ref Expression
1 tpex BCDV
2 1 a1i RFrABACADABCDV
3 simpl RFrABACADARFrA
4 df-tp BCD=BCD
5 simpr1 RFrABACADABA
6 simpr2 RFrABACADACA
7 5 6 prssd RFrABACADABCA
8 simpr3 RFrABACADADA
9 8 snssd RFrABACADADA
10 7 9 unssd RFrABACADABCDA
11 4 10 eqsstrid RFrABACADABCDA
12 5 tpnzd RFrABACADABCD
13 fri BCDVRFrABCDABCDxBCDyBCD¬yRx
14 2 3 11 12 13 syl22anc RFrABACADAxBCDyBCD¬yRx
15 breq2 x=ByRxyRB
16 15 notbid x=B¬yRx¬yRB
17 16 ralbidv x=ByBCD¬yRxyBCD¬yRB
18 breq2 x=CyRxyRC
19 18 notbid x=C¬yRx¬yRC
20 19 ralbidv x=CyBCD¬yRxyBCD¬yRC
21 breq2 x=DyRxyRD
22 21 notbid x=D¬yRx¬yRD
23 22 ralbidv x=DyBCD¬yRxyBCD¬yRD
24 17 20 23 rextpg BACADAxBCDyBCD¬yRxyBCD¬yRByBCD¬yRCyBCD¬yRD
25 24 adantl RFrABACADAxBCDyBCD¬yRxyBCD¬yRByBCD¬yRCyBCD¬yRD
26 14 25 mpbid RFrABACADAyBCD¬yRByBCD¬yRCyBCD¬yRD
27 snsstp3 DBCD
28 snssg DADBCDDBCD
29 8 28 syl RFrABACADADBCDDBCD
30 27 29 mpbiri RFrABACADADBCD
31 breq1 y=DyRBDRB
32 31 notbid y=D¬yRB¬DRB
33 32 rspcv DBCDyBCD¬yRB¬DRB
34 30 33 syl RFrABACADAyBCD¬yRB¬DRB
35 snsstp1 BBCD
36 snssg BABBCDBBCD
37 5 36 syl RFrABACADABBCDBBCD
38 35 37 mpbiri RFrABACADABBCD
39 breq1 y=ByRCBRC
40 39 notbid y=B¬yRC¬BRC
41 40 rspcv BBCDyBCD¬yRC¬BRC
42 38 41 syl RFrABACADAyBCD¬yRC¬BRC
43 snsstp2 CBCD
44 snssg CACBCDCBCD
45 6 44 syl RFrABACADACBCDCBCD
46 43 45 mpbiri RFrABACADACBCD
47 breq1 y=CyRDCRD
48 47 notbid y=C¬yRD¬CRD
49 48 rspcv CBCDyBCD¬yRD¬CRD
50 46 49 syl RFrABACADAyBCD¬yRD¬CRD
51 34 42 50 3orim123d RFrABACADAyBCD¬yRByBCD¬yRCyBCD¬yRD¬DRB¬BRC¬CRD
52 26 51 mpd RFrABACADA¬DRB¬BRC¬CRD
53 3ianor ¬DRBBRCCRD¬DRB¬BRC¬CRD
54 52 53 sylibr RFrABACADA¬DRBBRCCRD
55 3anrot DRBBRCCRDBRCCRDDRB
56 54 55 sylnib RFrABACADA¬BRCCRDDRB