Metamath Proof Explorer


Theorem frege92

Description: Inference from frege91 . Proposition 92 of Frege1879 p. 69. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x XU
frege91.y YV
frege91.r RW
Assertion frege92 X=ZXRYZt+RY

Proof

Step Hyp Ref Expression
1 frege91.x XU
2 frege91.y YV
3 frege91.r RW
4 vex wV
5 4 2 3 frege91 wRYwt+RY
6 5 sbcth XU[˙X/w]˙wRYwt+RY
7 frege53c [˙X/w]˙wRYwt+RYX=Z[˙Z/w]˙wRYwt+RY
8 6 7 syl XUX=Z[˙Z/w]˙wRYwt+RY
9 sbcim1 [˙Z/w]˙wRYwt+RY[˙Z/w]˙wRY[˙Z/w]˙wt+RY
10 9 imim2i X=Z[˙Z/w]˙wRYwt+RYX=Z[˙Z/w]˙wRY[˙Z/w]˙wt+RY
11 dfsbcq X=Z[˙X/w]˙wRY[˙Z/w]˙wRY
12 sbcbr1g XU[˙X/w]˙wRYX/wwRY
13 csbvarg XUX/ww=X
14 13 breq1d XUX/wwRYXRY
15 12 14 bitrd XU[˙X/w]˙wRYXRY
16 1 15 ax-mp [˙X/w]˙wRYXRY
17 11 16 bitr3di X=Z[˙Z/w]˙wRYXRY
18 eqcom X=ZZ=X
19 18 biimpi X=ZZ=X
20 19 1 eqeltrdi X=ZZU
21 sbcbr1g ZU[˙Z/w]˙wt+RYZ/wwt+RY
22 csbvarg ZUZ/ww=Z
23 22 breq1d ZUZ/wwt+RYZt+RY
24 21 23 bitrd ZU[˙Z/w]˙wt+RYZt+RY
25 20 24 syl X=Z[˙Z/w]˙wt+RYZt+RY
26 17 25 imbi12d X=Z[˙Z/w]˙wRY[˙Z/w]˙wt+RYXRYZt+RY
27 10 26 mpbidi X=Z[˙Z/w]˙wRYwt+RYX=ZXRYZt+RY
28 1 8 27 mp2b X=ZXRYZt+RY