Metamath Proof Explorer


Theorem frgpcpbl

Description: Compatibility of the group operation with the free group equivalence relation. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses frgpval.m G=freeGrpI
frgpval.b M=freeMndI×2𝑜
frgpval.r ˙=~FGI
frgpcpbl.p +˙=+M
Assertion frgpcpbl A˙CB˙DA+˙B˙C+˙D

Proof

Step Hyp Ref Expression
1 frgpval.m G=freeGrpI
2 frgpval.b M=freeMndI×2𝑜
3 frgpval.r ˙=~FGI
4 frgpcpbl.p +˙=+M
5 eqid IWordI×2𝑜=IWordI×2𝑜
6 eqid yI,z2𝑜y1𝑜z=yI,z2𝑜y1𝑜z
7 eqid vIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩=vIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩
8 eqid IWordI×2𝑜xIWordI×2𝑜ranvIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩x=IWordI×2𝑜xIWordI×2𝑜ranvIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩x
9 eqid mtWordIWordI×2𝑜|t0IWordI×2𝑜xIWordI×2𝑜ranvIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩xk1..^ttkranvIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩tk1mm1=mtWordIWordI×2𝑜|t0IWordI×2𝑜xIWordI×2𝑜ranvIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩xk1..^ttkranvIWordI×2𝑜n0v,wI×2𝑜vsplicenn⟨“wyI,z2𝑜y1𝑜zw”⟩tk1mm1
10 5 3 6 7 8 9 efgcpbl2 A˙CB˙DA++B˙C++D
11 5 3 efger ˙ErIWordI×2𝑜
12 11 a1i A˙CB˙D˙ErIWordI×2𝑜
13 simpl A˙CB˙DA˙C
14 12 13 ercl A˙CB˙DAIWordI×2𝑜
15 5 efgrcl AIWordI×2𝑜IVIWordI×2𝑜=WordI×2𝑜
16 14 15 syl A˙CB˙DIVIWordI×2𝑜=WordI×2𝑜
17 16 simprd A˙CB˙DIWordI×2𝑜=WordI×2𝑜
18 16 simpld A˙CB˙DIV
19 2on 2𝑜On
20 xpexg IV2𝑜OnI×2𝑜V
21 18 19 20 sylancl A˙CB˙DI×2𝑜V
22 eqid BaseM=BaseM
23 2 22 frmdbas I×2𝑜VBaseM=WordI×2𝑜
24 21 23 syl A˙CB˙DBaseM=WordI×2𝑜
25 17 24 eqtr4d A˙CB˙DIWordI×2𝑜=BaseM
26 14 25 eleqtrd A˙CB˙DABaseM
27 simpr A˙CB˙DB˙D
28 12 27 ercl A˙CB˙DBIWordI×2𝑜
29 28 25 eleqtrd A˙CB˙DBBaseM
30 2 22 4 frmdadd ABaseMBBaseMA+˙B=A++B
31 26 29 30 syl2anc A˙CB˙DA+˙B=A++B
32 12 13 ercl2 A˙CB˙DCIWordI×2𝑜
33 32 25 eleqtrd A˙CB˙DCBaseM
34 12 27 ercl2 A˙CB˙DDIWordI×2𝑜
35 34 25 eleqtrd A˙CB˙DDBaseM
36 2 22 4 frmdadd CBaseMDBaseMC+˙D=C++D
37 33 35 36 syl2anc A˙CB˙DC+˙D=C++D
38 10 31 37 3brtr4d A˙CB˙DA+˙B˙C+˙D