Description: If a nonempty finite friendship graph is K-regular, then it must have order 1 or 3. Special case of frgrregord013 . (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frgrreggt1.v | |
|
Assertion | frgrregord13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrreggt1.v | |
|
2 | simpl1 | |
|
3 | simpl2 | |
|
4 | simpr | |
|
5 | 1 | frgrregord013 | |
6 | 2 3 4 5 | syl3anc | |
7 | hasheq0 | |
|
8 | eqneqall | |
|
9 | 7 8 | syl6bi | |
10 | 9 | com23 | |
11 | 10 | a1i | |
12 | 11 | 3imp | |
13 | 12 | adantr | |
14 | 13 | com12 | |
15 | orc | |
|
16 | 15 | a1d | |
17 | olc | |
|
18 | 17 | a1d | |
19 | 14 16 18 | 3jaoi | |
20 | 6 19 | mpcom | |