Metamath Proof Explorer


Theorem frgrregord13

Description: If a nonempty finite friendship graph is K-regular, then it must have order 1 or 3. Special case of frgrregord013 . (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 4-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v V=VtxG
Assertion frgrregord13 GFriendGraphVFinVGRegUSGraphKV=1V=3

Proof

Step Hyp Ref Expression
1 frgrreggt1.v V=VtxG
2 simpl1 GFriendGraphVFinVGRegUSGraphKGFriendGraph
3 simpl2 GFriendGraphVFinVGRegUSGraphKVFin
4 simpr GFriendGraphVFinVGRegUSGraphKGRegUSGraphK
5 1 frgrregord013 GFriendGraphVFinGRegUSGraphKV=0V=1V=3
6 2 3 4 5 syl3anc GFriendGraphVFinVGRegUSGraphKV=0V=1V=3
7 hasheq0 VFinV=0V=
8 eqneqall V=VV=1V=3
9 7 8 syl6bi VFinV=0VV=1V=3
10 9 com23 VFinVV=0V=1V=3
11 10 a1i GFriendGraphVFinVV=0V=1V=3
12 11 3imp GFriendGraphVFinVV=0V=1V=3
13 12 adantr GFriendGraphVFinVGRegUSGraphKV=0V=1V=3
14 13 com12 V=0GFriendGraphVFinVGRegUSGraphKV=1V=3
15 orc V=1V=1V=3
16 15 a1d V=1GFriendGraphVFinVGRegUSGraphKV=1V=3
17 olc V=3V=1V=3
18 17 a1d V=3GFriendGraphVFinVGRegUSGraphKV=1V=3
19 14 16 18 3jaoi V=0V=1V=3GFriendGraphVFinVGRegUSGraphKV=1V=3
20 6 19 mpcom GFriendGraphVFinVGRegUSGraphKV=1V=3