Metamath Proof Explorer


Theorem frgrwopregasn

Description: According to statement 5 in Huneke p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018) (Revised by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V=VtxG
frgrwopreg.d D=VtxDegG
frgrwopreg.a A=xV|Dx=K
frgrwopreg.b B=VA
frgrwopreg.e E=EdgG
Assertion frgrwopregasn GFriendGraphXVA=XwVXXwE

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V=VtxG
2 frgrwopreg.d D=VtxDegG
3 frgrwopreg.a A=xV|Dx=K
4 frgrwopreg.b B=VA
5 frgrwopreg.e E=EdgG
6 1 2 3 4 5 frgrwopreglem4 GFriendGraphvAwBvwE
7 snidg XVXX
8 7 adantr XVA=XXX
9 eleq2 A=XXAXX
10 9 adantl XVA=XXAXX
11 8 10 mpbird XVA=XXA
12 preq1 v=Xvw=Xw
13 12 eleq1d v=XvwEXwE
14 13 ralbidv v=XwBvwEwBXwE
15 14 rspcv XAvAwBvwEwBXwE
16 11 15 syl XVA=XvAwBvwEwBXwE
17 difeq2 A=XVA=VX
18 4 17 eqtrid A=XB=VX
19 18 adantl XVA=XB=VX
20 19 raleqdv XVA=XwBXwEwVXXwE
21 16 20 sylibd XVA=XvAwBvwEwVXXwE
22 6 21 syl5com GFriendGraphXVA=XwVXXwE
23 22 3impib GFriendGraphXVA=XwVXXwE