Metamath Proof Explorer


Theorem frgrwopregasn

Description: According to statement 5 in Huneke p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018) (Revised by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V = Vtx G
frgrwopreg.d D = VtxDeg G
frgrwopreg.a A = x V | D x = K
frgrwopreg.b B = V A
frgrwopreg.e E = Edg G
Assertion frgrwopregasn G FriendGraph X V A = X w V X X w E

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V = Vtx G
2 frgrwopreg.d D = VtxDeg G
3 frgrwopreg.a A = x V | D x = K
4 frgrwopreg.b B = V A
5 frgrwopreg.e E = Edg G
6 1 2 3 4 5 frgrwopreglem4 G FriendGraph v A w B v w E
7 snidg X V X X
8 7 adantr X V A = X X X
9 eleq2 A = X X A X X
10 9 adantl X V A = X X A X X
11 8 10 mpbird X V A = X X A
12 preq1 v = X v w = X w
13 12 eleq1d v = X v w E X w E
14 13 ralbidv v = X w B v w E w B X w E
15 14 rspcv X A v A w B v w E w B X w E
16 11 15 syl X V A = X v A w B v w E w B X w E
17 difeq2 A = X V A = V X
18 4 17 syl5eq A = X B = V X
19 18 adantl X V A = X B = V X
20 19 raleqdv X V A = X w B X w E w V X X w E
21 16 20 sylibd X V A = X v A w B v w E w V X X w E
22 6 21 syl5com G FriendGraph X V A = X w V X X w E
23 22 3impib G FriendGraph X V A = X w V X X w E