Metamath Proof Explorer


Theorem frgrwopreglem2

Description: Lemma 2 for frgrwopreg . If the set A of vertices of degree K is not empty in a friendship graph with at least two vertices, then K must be greater than 1 . This is only an observation, which is not required for the proof the friendship theorem. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 2-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v V=VtxG
frgrwopreg.d D=VtxDegG
frgrwopreg.a A=xV|Dx=K
frgrwopreg.b B=VA
Assertion frgrwopreglem2 GFriendGraph1<VA2K

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V=VtxG
2 frgrwopreg.d D=VtxDegG
3 frgrwopreg.a A=xV|Dx=K
4 frgrwopreg.b B=VA
5 n0 AxxA
6 3 reqabi xAxVDx=K
7 1 vdgfrgrgt2 GFriendGraphxV1<V2VtxDegGx
8 7 imp GFriendGraphxV1<V2VtxDegGx
9 breq2 K=Dx2K2Dx
10 2 fveq1i Dx=VtxDegGx
11 10 breq2i 2Dx2VtxDegGx
12 9 11 bitrdi K=Dx2K2VtxDegGx
13 12 eqcoms Dx=K2K2VtxDegGx
14 8 13 syl5ibrcom GFriendGraphxV1<VDx=K2K
15 14 exp31 GFriendGraphxV1<VDx=K2K
16 15 com14 Dx=KxV1<VGFriendGraph2K
17 16 impcom xVDx=K1<VGFriendGraph2K
18 6 17 sylbi xA1<VGFriendGraph2K
19 18 exlimiv xxA1<VGFriendGraph2K
20 5 19 sylbi A1<VGFriendGraph2K
21 20 3imp31 GFriendGraph1<VA2K