Description: Lemma 5 for frgrwopreg . If A as well as B contain at least two vertices, there is a 4-cycle in a friendship graph. This corresponds to statement 6 in Huneke p. 2: "... otherwise, there are two different vertices in A, and they have two common neighbors in B, ...". (Contributed by Alexander van der Vekens, 31-Dec-2017) (Proof shortened by AV, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgrwopreg.v | |
|
frgrwopreg.d | |
||
frgrwopreg.a | |
||
frgrwopreg.b | |
||
frgrwopreg.e | |
||
Assertion | frgrwopreglem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | |
|
2 | frgrwopreg.d | |
|
3 | frgrwopreg.a | |
|
4 | frgrwopreg.b | |
|
5 | frgrwopreg.e | |
|
6 | simpllr | |
|
7 | 6 | anim1i | |
8 | simplll | |
|
9 | fveqeq2 | |
|
10 | 9 3 | elrab2 | |
11 | 10 | simplbi | |
12 | rabidim1 | |
|
13 | 12 3 | eleq2s | |
14 | 11 13 | anim12i | |
15 | 14 | adantl | |
16 | eldifi | |
|
17 | 16 4 | eleq2s | |
18 | eldifi | |
|
19 | 18 4 | eleq2s | |
20 | 17 19 | anim12i | |
21 | 15 20 | anim12i | |
22 | 1 2 3 4 5 | frgrwopreglem5lem | |
23 | 22 | adantll | |
24 | 8 21 23 | 3jca | |
25 | 24 | adantr | |
26 | 1 2 5 | frgrwopreglem5a | |
27 | 25 26 | syl | |
28 | 3anass | |
|
29 | 7 27 28 | sylanbrc | |
30 | 29 | ex | |
31 | 30 | reximdvva | |
32 | 31 | exp31 | |
33 | 32 | com24 | |
34 | 33 | imp31 | |
35 | 34 | reximdvva | |
36 | 35 | ex | |
37 | 36 | com13 | |
38 | 37 | imp | |
39 | 1 2 3 4 | frgrwopreglem1 | |
40 | hashgt12el | |
|
41 | 40 | ex | |
42 | hashgt12el | |
|
43 | 42 | ex | |
44 | 41 43 | im2anan9 | |
45 | 39 44 | ax-mp | |
46 | 38 45 | syl11 | |
47 | 46 | 3impib | |