Metamath Proof Explorer


Theorem frgrwopreglem5

Description: Lemma 5 for frgrwopreg . If A as well as B contain at least two vertices, there is a 4-cycle in a friendship graph. This corresponds to statement 6 in Huneke p. 2: "... otherwise, there are two different vertices in A, and they have two common neighbors in B, ...". (Contributed by Alexander van der Vekens, 31-Dec-2017) (Proof shortened by AV, 5-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v V=VtxG
frgrwopreg.d D=VtxDegG
frgrwopreg.a A=xV|Dx=K
frgrwopreg.b B=VA
frgrwopreg.e E=EdgG
Assertion frgrwopreglem5 GFriendGraph1<A1<BaAxAbByBaxbyabEbxExyEyaE

Proof

Step Hyp Ref Expression
1 frgrwopreg.v V=VtxG
2 frgrwopreg.d D=VtxDegG
3 frgrwopreg.a A=xV|Dx=K
4 frgrwopreg.b B=VA
5 frgrwopreg.e E=EdgG
6 simpllr GFriendGraphaxaAxAbByBax
7 6 anim1i GFriendGraphaxaAxAbByBbyaxby
8 simplll GFriendGraphaxaAxAbByBGFriendGraph
9 fveqeq2 x=aDx=KDa=K
10 9 3 elrab2 aAaVDa=K
11 10 simplbi aAaV
12 rabidim1 xxV|Dx=KxV
13 12 3 eleq2s xAxV
14 11 13 anim12i aAxAaVxV
15 14 adantl GFriendGraphaxaAxAaVxV
16 eldifi bVAbV
17 16 4 eleq2s bBbV
18 eldifi yVAyV
19 18 4 eleq2s yByV
20 17 19 anim12i bByBbVyV
21 15 20 anim12i GFriendGraphaxaAxAbByBaVxVbVyV
22 1 2 3 4 5 frgrwopreglem5lem aAxAbByBDa=DxDaDbDxDy
23 22 adantll GFriendGraphaxaAxAbByBDa=DxDaDbDxDy
24 8 21 23 3jca GFriendGraphaxaAxAbByBGFriendGraphaVxVbVyVDa=DxDaDbDxDy
25 24 adantr GFriendGraphaxaAxAbByBbyGFriendGraphaVxVbVyVDa=DxDaDbDxDy
26 1 2 5 frgrwopreglem5a GFriendGraphaVxVbVyVDa=DxDaDbDxDyabEbxExyEyaE
27 25 26 syl GFriendGraphaxaAxAbByBbyabEbxExyEyaE
28 3anass axbyabEbxExyEyaEaxbyabEbxExyEyaE
29 7 27 28 sylanbrc GFriendGraphaxaAxAbByBbyaxbyabEbxExyEyaE
30 29 ex GFriendGraphaxaAxAbByBbyaxbyabEbxExyEyaE
31 30 reximdvva GFriendGraphaxaAxAbByBbybByBaxbyabEbxExyEyaE
32 31 exp31 GFriendGraphaxaAxAbByBbybByBaxbyabEbxExyEyaE
33 32 com24 GFriendGraphbByBbyaAxAaxbByBaxbyabEbxExyEyaE
34 33 imp31 GFriendGraphbByBbyaAxAaxbByBaxbyabEbxExyEyaE
35 34 reximdvva GFriendGraphbByBbyaAxAaxaAxAbByBaxbyabEbxExyEyaE
36 35 ex GFriendGraphbByBbyaAxAaxaAxAbByBaxbyabEbxExyEyaE
37 36 com13 aAxAaxbByBbyGFriendGraphaAxAbByBaxbyabEbxExyEyaE
38 37 imp aAxAaxbByBbyGFriendGraphaAxAbByBaxbyabEbxExyEyaE
39 1 2 3 4 frgrwopreglem1 AVBV
40 hashgt12el AV1<AaAxAax
41 40 ex AV1<AaAxAax
42 hashgt12el BV1<BbByBby
43 42 ex BV1<BbByBby
44 41 43 im2anan9 AVBV1<A1<BaAxAaxbByBby
45 39 44 ax-mp 1<A1<BaAxAaxbByBby
46 38 45 syl11 GFriendGraph1<A1<BaAxAbByBaxbyabEbxExyEyaE
47 46 3impib GFriendGraph1<A1<BaAxAbByBaxbyabEbxExyEyaE