Metamath Proof Explorer


Theorem frlmfibas

Description: The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018)

Ref Expression
Hypotheses frlmfibas.f F=RfreeLModI
frlmfibas.n N=BaseR
Assertion frlmfibas RVIFinNI=BaseF

Proof

Step Hyp Ref Expression
1 frlmfibas.f F=RfreeLModI
2 frlmfibas.n N=BaseR
3 elmapi aNIa:IN
4 3 adantl IFinaNIa:IN
5 simpl IFinaNIIFin
6 fvexd IFinaNI0RV
7 4 5 6 fdmfifsupp IFinaNIfinSupp0Ra
8 7 ralrimiva IFinaNIfinSupp0Ra
9 8 adantl RVIFinaNIfinSupp0Ra
10 rabid2 NI=aNI|finSupp0RaaNIfinSupp0Ra
11 9 10 sylibr RVIFinNI=aNI|finSupp0Ra
12 eqid 0R=0R
13 eqid aNI|finSupp0Ra=aNI|finSupp0Ra
14 1 2 12 13 frlmbas RVIFinaNI|finSupp0Ra=BaseF
15 11 14 eqtrd RVIFinNI=BaseF