Metamath Proof Explorer


Theorem frlmvscavalb

Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses frlmplusgvalb.f F = R freeLMod I
frlmplusgvalb.b B = Base F
frlmplusgvalb.i φ I W
frlmplusgvalb.x φ X B
frlmplusgvalb.z φ Z B
frlmplusgvalb.r φ R Ring
frlmvscavalb.k K = Base R
frlmvscavalb.a φ A K
frlmvscavalb.v ˙ = F
frlmvscavalb.t · ˙ = R
Assertion frlmvscavalb φ Z = A ˙ X i I Z i = A · ˙ X i

Proof

Step Hyp Ref Expression
1 frlmplusgvalb.f F = R freeLMod I
2 frlmplusgvalb.b B = Base F
3 frlmplusgvalb.i φ I W
4 frlmplusgvalb.x φ X B
5 frlmplusgvalb.z φ Z B
6 frlmplusgvalb.r φ R Ring
7 frlmvscavalb.k K = Base R
8 frlmvscavalb.a φ A K
9 frlmvscavalb.v ˙ = F
10 frlmvscavalb.t · ˙ = R
11 1 7 2 frlmbasmap I W Z B Z K I
12 3 5 11 syl2anc φ Z K I
13 7 fvexi K V
14 13 a1i φ K V
15 14 3 elmapd φ Z K I Z : I K
16 12 15 mpbid φ Z : I K
17 16 ffnd φ Z Fn I
18 1 frlmlmod R Ring I W F LMod
19 6 3 18 syl2anc φ F LMod
20 8 7 eleqtrdi φ A Base R
21 1 frlmsca R Ring I W R = Scalar F
22 6 3 21 syl2anc φ R = Scalar F
23 22 fveq2d φ Base R = Base Scalar F
24 20 23 eleqtrd φ A Base Scalar F
25 eqid Scalar F = Scalar F
26 eqid Base Scalar F = Base Scalar F
27 2 25 9 26 lmodvscl F LMod A Base Scalar F X B A ˙ X B
28 19 24 4 27 syl3anc φ A ˙ X B
29 1 7 2 frlmbasmap I W A ˙ X B A ˙ X K I
30 3 28 29 syl2anc φ A ˙ X K I
31 14 3 elmapd φ A ˙ X K I A ˙ X : I K
32 30 31 mpbid φ A ˙ X : I K
33 32 ffnd φ A ˙ X Fn I
34 eqfnfv Z Fn I A ˙ X Fn I Z = A ˙ X i I Z i = A ˙ X i
35 17 33 34 syl2anc φ Z = A ˙ X i I Z i = A ˙ X i
36 3 adantr φ i I I W
37 8 adantr φ i I A K
38 4 adantr φ i I X B
39 simpr φ i I i I
40 1 2 7 36 37 38 39 9 10 frlmvscaval φ i I A ˙ X i = A · ˙ X i
41 40 eqeq2d φ i I Z i = A ˙ X i Z i = A · ˙ X i
42 41 ralbidva φ i I Z i = A ˙ X i i I Z i = A · ˙ X i
43 35 42 bitrd φ Z = A ˙ X i I Z i = A · ˙ X i