Description: If an element of a well-founded set satisfies a property ph , then there is a minimal element that satisfies ph . (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frminex.1 | |
|
frminex.2 | |
||
Assertion | frminex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frminex.1 | |
|
2 | frminex.2 | |
|
3 | rabn0 | |
|
4 | 1 | rabex | |
5 | ssrab2 | |
|
6 | fri | |
|
7 | 2 | ralrab | |
8 | 7 | rexbii | |
9 | breq2 | |
|
10 | 9 | notbid | |
11 | 10 | imbi2d | |
12 | 11 | ralbidv | |
13 | 12 | rexrab2 | |
14 | 8 13 | bitri | |
15 | 6 14 | sylib | |
16 | 15 | an4s | |
17 | 4 5 16 | mpanl12 | |
18 | 17 | ex | |
19 | 3 18 | biimtrrid | |