Metamath Proof Explorer


Theorem frminex

Description: If an element of a well-founded set satisfies a property ph , then there is a minimal element that satisfies ph . (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Hypotheses frminex.1 AV
frminex.2 x=yφψ
Assertion frminex RFrAxAφxAφyAψ¬yRx

Proof

Step Hyp Ref Expression
1 frminex.1 AV
2 frminex.2 x=yφψ
3 rabn0 xA|φxAφ
4 1 rabex xA|φV
5 ssrab2 xA|φA
6 fri xA|φVRFrAxA|φAxA|φzxA|φyxA|φ¬yRz
7 2 ralrab yxA|φ¬yRzyAψ¬yRz
8 7 rexbii zxA|φyxA|φ¬yRzzxA|φyAψ¬yRz
9 breq2 z=xyRzyRx
10 9 notbid z=x¬yRz¬yRx
11 10 imbi2d z=xψ¬yRzψ¬yRx
12 11 ralbidv z=xyAψ¬yRzyAψ¬yRx
13 12 rexrab2 zxA|φyAψ¬yRzxAφyAψ¬yRx
14 8 13 bitri zxA|φyxA|φ¬yRzxAφyAψ¬yRx
15 6 14 sylib xA|φVRFrAxA|φAxA|φxAφyAψ¬yRx
16 15 an4s xA|φVxA|φARFrAxA|φxAφyAψ¬yRx
17 4 5 16 mpanl12 RFrAxA|φxAφyAψ¬yRx
18 17 ex RFrAxA|φxAφyAψ¬yRx
19 3 18 biimtrrid RFrAxAφxAφyAψ¬yRx