Metamath Proof Explorer


Theorem fsequb

Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 19-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fsequb kMNFkxkMNFk<x

Proof

Step Hyp Ref Expression
1 fzfi MNFin
2 fimaxre3 MNFinkMNFkykMNFky
3 1 2 mpan kMNFkykMNFky
4 r19.26 kMNFkFkykMNFkkMNFky
5 peano2re yy+1
6 ltp1 yy<y+1
7 6 adantr yFky<y+1
8 simpr yFkFk
9 simpl yFky
10 5 adantr yFky+1
11 lelttr Fkyy+1Fkyy<y+1Fk<y+1
12 8 9 10 11 syl3anc yFkFkyy<y+1Fk<y+1
13 7 12 mpan2d yFkFkyFk<y+1
14 13 expimpd yFkFkyFk<y+1
15 14 ralimdv ykMNFkFkykMNFk<y+1
16 brralrspcev y+1kMNFk<y+1xkMNFk<x
17 5 15 16 syl6an ykMNFkFkyxkMNFk<x
18 4 17 biimtrrid ykMNFkkMNFkyxkMNFk<x
19 18 expd ykMNFkkMNFkyxkMNFk<x
20 19 impcom kMNFkykMNFkyxkMNFk<x
21 20 rexlimdva kMNFkykMNFkyxkMNFk<x
22 3 21 mpd kMNFkxkMNFk<x