Metamath Proof Explorer


Theorem fsequb2

Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fsequb2 F:MNxyranFyx

Proof

Step Hyp Ref Expression
1 fzfi MNFin
2 ffvelcdm F:MNkMNFk
3 2 ralrimiva F:MNkMNFk
4 fimaxre3 MNFinkMNFkxkMNFkx
5 1 3 4 sylancr F:MNxkMNFkx
6 ffn F:MNFFnMN
7 breq1 y=FkyxFkx
8 7 ralrn FFnMNyranFyxkMNFkx
9 6 8 syl F:MNyranFyxkMNFkx
10 9 rexbidv F:MNxyranFyxxkMNFkx
11 5 10 mpbird F:MNxyranFyx