Metamath Proof Explorer


Theorem fsequb2

Description: The values of a finite real sequence have an upper bound. (Contributed by NM, 20-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fsequb2 F : M N x y ran F y x

Proof

Step Hyp Ref Expression
1 fzfi M N Fin
2 ffvelrn F : M N k M N F k
3 2 ralrimiva F : M N k M N F k
4 fimaxre3 M N Fin k M N F k x k M N F k x
5 1 3 4 sylancr F : M N x k M N F k x
6 ffn F : M N F Fn M N
7 breq1 y = F k y x F k x
8 7 ralrn F Fn M N y ran F y x k M N F k x
9 6 8 syl F : M N y ran F y x k M N F k x
10 9 rexbidv F : M N x y ran F y x x k M N F k x
11 5 10 mpbird F : M N x y ran F y x