| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0gsumfz.b |  | 
						
							| 2 |  | nn0gsumfz.0 |  | 
						
							| 3 |  | nn0gsumfz.g |  | 
						
							| 4 |  | nn0gsumfz.f |  | 
						
							| 5 |  | fsfnn0gsumfsffz.s |  | 
						
							| 6 |  | fsfnn0gsumfsffz.h |  | 
						
							| 7 | 6 | oveq2i |  | 
						
							| 8 | 3 | adantr |  | 
						
							| 9 |  | nn0ex |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | elmapi |  | 
						
							| 12 | 4 11 | syl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 2 | fvexi |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 4 | adantr |  | 
						
							| 17 | 5 | adantr |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 15 16 17 18 | suppssfz |  | 
						
							| 20 |  | elmapfun |  | 
						
							| 21 | 4 20 | syl |  | 
						
							| 22 | 14 | a1i |  | 
						
							| 23 | 4 21 22 | 3jca |  | 
						
							| 24 |  | fzfid |  | 
						
							| 25 | 24 | anim1i |  | 
						
							| 26 |  | suppssfifsupp |  | 
						
							| 27 | 23 25 26 | syl2an2r |  | 
						
							| 28 | 19 27 | syldan |  | 
						
							| 29 | 1 2 8 10 13 19 28 | gsumres |  | 
						
							| 30 | 7 29 | eqtr2id |  | 
						
							| 31 | 30 | ex |  |