| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suppssfz.z |
|
| 2 |
|
suppssfz.f |
|
| 3 |
|
suppssfz.s |
|
| 4 |
|
suppssfz.b |
|
| 5 |
|
elmapfn |
|
| 6 |
2 5
|
syl |
|
| 7 |
|
nn0ex |
|
| 8 |
7
|
a1i |
|
| 9 |
6 8 1
|
3jca |
|
| 10 |
9
|
adantr |
|
| 11 |
|
elsuppfn |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
breq2 |
|
| 14 |
|
fveqeq2 |
|
| 15 |
13 14
|
imbi12d |
|
| 16 |
15
|
rspcva |
|
| 17 |
|
simplr |
|
| 18 |
3
|
adantr |
|
| 19 |
18
|
adantr |
|
| 20 |
|
nn0re |
|
| 21 |
|
nn0re |
|
| 22 |
3 21
|
syl |
|
| 23 |
|
lenlt |
|
| 24 |
20 22 23
|
syl2anr |
|
| 25 |
24
|
biimpar |
|
| 26 |
|
elfz2nn0 |
|
| 27 |
17 19 25 26
|
syl3anbrc |
|
| 28 |
27
|
a1d |
|
| 29 |
28
|
ex |
|
| 30 |
|
eqneqall |
|
| 31 |
30
|
a1i |
|
| 32 |
29 31
|
jad |
|
| 33 |
32
|
com23 |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
com14 |
|
| 36 |
16 35
|
syl |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
pm2.43a |
|
| 39 |
38
|
com23 |
|
| 40 |
39
|
imp |
|
| 41 |
40
|
com13 |
|
| 42 |
41
|
imp |
|
| 43 |
12 42
|
sylbid |
|
| 44 |
43
|
ssrdv |
|
| 45 |
4 44
|
mpdan |
|