Metamath Proof Explorer


Theorem fsng

Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012)

Ref Expression
Assertion fsng ACBDF:ABF=AB

Proof

Step Hyp Ref Expression
1 sneq a=Aa=A
2 1 feq2d a=AF:abF:Ab
3 opeq1 a=Aab=Ab
4 3 sneqd a=Aab=Ab
5 4 eqeq2d a=AF=abF=Ab
6 2 5 bibi12d a=AF:abF=abF:AbF=Ab
7 sneq b=Bb=B
8 7 feq3d b=BF:AbF:AB
9 opeq2 b=BAb=AB
10 9 sneqd b=BAb=AB
11 10 eqeq2d b=BF=AbF=AB
12 8 11 bibi12d b=BF:AbF=AbF:ABF=AB
13 vex aV
14 vex bV
15 13 14 fsn F:abF=ab
16 6 12 15 vtocl2g ACBDF:ABF=AB