Description: Lemma for fsum0diag . (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | fsum0diaglem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle1 | |
|
2 | 1 | adantr | |
3 | elfz3nn0 | |
|
4 | 3 | adantr | |
5 | 4 | nn0zd | |
6 | 5 | zred | |
7 | elfzelz | |
|
8 | 7 | adantr | |
9 | 8 | zred | |
10 | 6 9 | subge02d | |
11 | 2 10 | mpbid | |
12 | 5 8 | zsubcld | |
13 | eluz | |
|
14 | 12 5 13 | syl2anc | |
15 | 11 14 | mpbird | |
16 | fzss2 | |
|
17 | 15 16 | syl | |
18 | simpr | |
|
19 | 17 18 | sseldd | |
20 | elfzelz | |
|
21 | 20 | adantl | |
22 | 21 | zred | |
23 | elfzle2 | |
|
24 | 23 | adantl | |
25 | 22 6 9 24 | lesubd | |
26 | elfzuz | |
|
27 | 26 | adantr | |
28 | 5 21 | zsubcld | |
29 | elfz5 | |
|
30 | 27 28 29 | syl2anc | |
31 | 25 30 | mpbird | |
32 | 19 31 | jca | |