Metamath Proof Explorer


Theorem fsum0diaglem

Description: Lemma for fsum0diag . (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion fsum0diaglem j0Nk0Njk0Nj0Nk

Proof

Step Hyp Ref Expression
1 elfzle1 j0N0j
2 1 adantr j0Nk0Nj0j
3 elfz3nn0 j0NN0
4 3 adantr j0Nk0NjN0
5 4 nn0zd j0Nk0NjN
6 5 zred j0Nk0NjN
7 elfzelz j0Nj
8 7 adantr j0Nk0Njj
9 8 zred j0Nk0Njj
10 6 9 subge02d j0Nk0Nj0jNjN
11 2 10 mpbid j0Nk0NjNjN
12 5 8 zsubcld j0Nk0NjNj
13 eluz NjNNNjNjN
14 12 5 13 syl2anc j0Nk0NjNNjNjN
15 11 14 mpbird j0Nk0NjNNj
16 fzss2 NNj0Nj0N
17 15 16 syl j0Nk0Nj0Nj0N
18 simpr j0Nk0Njk0Nj
19 17 18 sseldd j0Nk0Njk0N
20 elfzelz k0Njk
21 20 adantl j0Nk0Njk
22 21 zred j0Nk0Njk
23 elfzle2 k0NjkNj
24 23 adantl j0Nk0NjkNj
25 22 6 9 24 lesubd j0Nk0NjjNk
26 elfzuz j0Nj0
27 26 adantr j0Nk0Njj0
28 5 21 zsubcld j0Nk0NjNk
29 elfz5 j0Nkj0NkjNk
30 27 28 29 syl2anc j0Nk0Njj0NkjNk
31 25 30 mpbird j0Nk0Njj0Nk
32 19 31 jca j0Nk0Njk0Nj0Nk