Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft . The proof demonstrates how this can be derived starting from from fsumshft . (Contributed by NM, 1-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumshftd.1 | |
|
fsumshftd.2 | |
||
fsumshftd.3 | |
||
fsumshftd.4 | |
||
fsumshftd.5 | |
||
Assertion | fsumshftd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumshftd.1 | |
|
2 | fsumshftd.2 | |
|
3 | fsumshftd.3 | |
|
4 | fsumshftd.4 | |
|
5 | fsumshftd.5 | |
|
6 | nfcv | |
|
7 | nfcsb1v | |
|
8 | csbeq1a | |
|
9 | 6 7 8 | cbvsumi | |
10 | nfv | |
|
11 | 7 | nfel1 | |
12 | 10 11 | nfim | |
13 | eleq1w | |
|
14 | 13 | anbi2d | |
15 | 8 | eleq1d | |
16 | 14 15 | imbi12d | |
17 | 12 16 4 | chvarfv | |
18 | csbeq1 | |
|
19 | 1 2 3 17 18 | fsumshft | |
20 | ovexd | |
|
21 | 20 5 | csbied | |
22 | 21 | sumeq2sdv | |
23 | 19 22 | eqtrd | |
24 | 9 23 | eqtrid | |