Metamath Proof Explorer


Theorem fsumshftd

Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft . The proof demonstrates how this can be derived starting from from fsumshft . (Contributed by NM, 1-Nov-2019)

Ref Expression
Hypotheses fsumshftd.1 φK
fsumshftd.2 φM
fsumshftd.3 φN
fsumshftd.4 φjMNA
fsumshftd.5 φj=kKA=B
Assertion fsumshftd φj=MNA=k=M+KN+KB

Proof

Step Hyp Ref Expression
1 fsumshftd.1 φK
2 fsumshftd.2 φM
3 fsumshftd.3 φN
4 fsumshftd.4 φjMNA
5 fsumshftd.5 φj=kKA=B
6 nfcv _wA
7 nfcsb1v _jw/jA
8 csbeq1a j=wA=w/jA
9 6 7 8 cbvsumi j=MNA=w=MNw/jA
10 nfv jφwMN
11 7 nfel1 jw/jA
12 10 11 nfim jφwMNw/jA
13 eleq1w j=wjMNwMN
14 13 anbi2d j=wφjMNφwMN
15 8 eleq1d j=wAw/jA
16 14 15 imbi12d j=wφjMNAφwMNw/jA
17 12 16 4 chvarfv φwMNw/jA
18 csbeq1 w=kKw/jA=kK/jA
19 1 2 3 17 18 fsumshft φw=MNw/jA=k=M+KN+KkK/jA
20 ovexd φkKV
21 20 5 csbied φkK/jA=B
22 21 sumeq2sdv φk=M+KN+KkK/jA=k=M+KN+KB
23 19 22 eqtrd φw=MNw/jA=k=M+KN+KB
24 9 23 eqtrid φj=MNA=k=M+KN+KB