Metamath Proof Explorer


Theorem fsumsplitf

Description: Split a sum into two parts. A version of fsumsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fsumsplitf.ph k φ
fsumsplitf.ab φ A B =
fsumsplitf.u φ U = A B
fsumsplitf.fi φ U Fin
fsumsplitf.c φ k U C
Assertion fsumsplitf φ k U C = k A C + k B C

Proof

Step Hyp Ref Expression
1 fsumsplitf.ph k φ
2 fsumsplitf.ab φ A B =
3 fsumsplitf.u φ U = A B
4 fsumsplitf.fi φ U Fin
5 fsumsplitf.c φ k U C
6 nfcv _ j C
7 nfcsb1v _ k j / k C
8 csbeq1a k = j C = j / k C
9 6 7 8 cbvsumi k U C = j U j / k C
10 9 a1i φ k U C = j U j / k C
11 nfv k j U
12 1 11 nfan k φ j U
13 7 nfel1 k j / k C
14 12 13 nfim k φ j U j / k C
15 eleq1w k = j k U j U
16 15 anbi2d k = j φ k U φ j U
17 8 eleq1d k = j C j / k C
18 16 17 imbi12d k = j φ k U C φ j U j / k C
19 14 18 5 chvarfv φ j U j / k C
20 2 3 4 19 fsumsplit φ j U j / k C = j A j / k C + j B j / k C
21 csbeq1a j = k j / k C = k / j j / k C
22 csbcow k / j j / k C = k / k C
23 csbid k / k C = C
24 22 23 eqtri k / j j / k C = C
25 21 24 eqtrdi j = k j / k C = C
26 7 6 25 cbvsumi j A j / k C = k A C
27 7 6 25 cbvsumi j B j / k C = k B C
28 26 27 oveq12i j A j / k C + j B j / k C = k A C + k B C
29 28 a1i φ j A j / k C + j B j / k C = k A C + k B C
30 10 20 29 3eqtrd φ k U C = k A C + k B C