Metamath Proof Explorer


Theorem fsuppcolem

Description: Lemma for fsuppco . Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses fsuppcolem.f φF-1VZFin
fsuppcolem.g φG:X1-1Y
Assertion fsuppcolem φFG-1VZFin

Proof

Step Hyp Ref Expression
1 fsuppcolem.f φF-1VZFin
2 fsuppcolem.g φG:X1-1Y
3 cnvco FG-1=G-1F-1
4 3 imaeq1i FG-1VZ=G-1F-1VZ
5 imaco G-1F-1VZ=G-1F-1VZ
6 4 5 eqtri FG-1VZ=G-1F-1VZ
7 df-f1 G:X1-1YG:XYFunG-1
8 7 simprbi G:X1-1YFunG-1
9 2 8 syl φFunG-1
10 imafi FunG-1F-1VZFinG-1F-1VZFin
11 9 1 10 syl2anc φG-1F-1VZFin
12 6 11 eqeltrid φFG-1VZFin