| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fthmon.b |
|
| 2 |
|
fthmon.h |
|
| 3 |
|
fthmon.f |
|
| 4 |
|
fthmon.x |
|
| 5 |
|
fthmon.y |
|
| 6 |
|
fthmon.r |
|
| 7 |
|
fthmon.m |
|
| 8 |
|
fthmon.n |
|
| 9 |
|
fthmon.1 |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
fthfunc |
|
| 14 |
13
|
ssbri |
|
| 15 |
3 14
|
syl |
|
| 16 |
|
df-br |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
funcrcl |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
simprd |
|
| 21 |
20
|
adantr |
|
| 22 |
15
|
adantr |
|
| 23 |
1 10 22
|
funcf1 |
|
| 24 |
4
|
adantr |
|
| 25 |
23 24
|
ffvelcdmd |
|
| 26 |
5
|
adantr |
|
| 27 |
23 26
|
ffvelcdmd |
|
| 28 |
|
simpr1 |
|
| 29 |
23 28
|
ffvelcdmd |
|
| 30 |
9
|
adantr |
|
| 31 |
1 2 11 22 28 24
|
funcf2 |
|
| 32 |
|
simpr2 |
|
| 33 |
31 32
|
ffvelcdmd |
|
| 34 |
|
simpr3 |
|
| 35 |
31 34
|
ffvelcdmd |
|
| 36 |
10 11 12 8 21 25 27 29 30 33 35
|
moni |
|
| 37 |
|
eqid |
|
| 38 |
6
|
adantr |
|
| 39 |
1 2 37 12 22 28 24 26 32 38
|
funcco |
|
| 40 |
1 2 37 12 22 28 24 26 34 38
|
funcco |
|
| 41 |
39 40
|
eqeq12d |
|
| 42 |
3
|
adantr |
|
| 43 |
19
|
simpld |
|
| 44 |
43
|
adantr |
|
| 45 |
1 2 37 44 28 24 26 32 38
|
catcocl |
|
| 46 |
1 2 37 44 28 24 26 34 38
|
catcocl |
|
| 47 |
1 2 11 42 28 26 45 46
|
fthi |
|
| 48 |
41 47
|
bitr3d |
|
| 49 |
1 2 11 42 28 24 32 34
|
fthi |
|
| 50 |
36 48 49
|
3bitr3d |
|
| 51 |
50
|
biimpd |
|
| 52 |
51
|
ralrimivvva |
|
| 53 |
1 2 37 7 43 4 5
|
ismon2 |
|
| 54 |
6 52 53
|
mpbir2and |
|