Metamath Proof Explorer


Theorem fucbas

Description: The objects of the functor category are functors from C to D . (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypothesis fucbas.q Q=CFuncCatD
Assertion fucbas CFuncD=BaseQ

Proof

Step Hyp Ref Expression
1 fucbas.q Q=CFuncCatD
2 eqid CFuncD=CFuncD
3 eqid CNatD=CNatD
4 eqid BaseC=BaseC
5 eqid compD=compD
6 simpl CCatDCatCCat
7 simpr CCatDCatDCat
8 eqid compQ=compQ
9 1 2 3 4 5 6 7 8 fuccofval CCatDCatcompQ=vCFuncD×CFuncD,hCFuncD1stv/f2ndv/gbgCNatDh,afCNatDgxBaseCbx1stfx1stgxcompD1sthxax
10 1 2 3 4 5 6 7 9 fucval CCatDCatQ=BasendxCFuncDHomndxCNatDcompndxcompQ
11 catstr BasendxCFuncDHomndxCNatDcompndxcompQStruct115
12 baseid Base=SlotBasendx
13 snsstp1 BasendxCFuncDBasendxCFuncDHomndxCNatDcompndxcompQ
14 ovexd CCatDCatCFuncDV
15 eqid BaseQ=BaseQ
16 10 11 12 13 14 15 strfv3 CCatDCatBaseQ=CFuncD
17 16 eqcomd CCatDCatCFuncD=BaseQ
18 base0 =Base
19 funcrcl fCFuncDCCatDCat
20 19 con3i ¬CCatDCat¬fCFuncD
21 20 eq0rdv ¬CCatDCatCFuncD=
22 fnfuc FuncCatFnCat×Cat
23 22 fndmi domFuncCat=Cat×Cat
24 23 ndmov ¬CCatDCatCFuncCatD=
25 1 24 eqtrid ¬CCatDCatQ=
26 25 fveq2d ¬CCatDCatBaseQ=Base
27 18 21 26 3eqtr4a ¬CCatDCatCFuncD=BaseQ
28 17 27 pm2.61i CFuncD=BaseQ