Metamath Proof Explorer


Theorem fucofvalg

Description: Value of the function giving the functor composition bifunctor. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses fucofvalg.p φ P U
fucofvalg.c φ 1 st P = C
fucofvalg.d φ 2 nd P = D
fucofvalg.e φ E V
fucofvalg.o No typesetting found for |- ( ph -> ( P o.F E ) = .o. ) with typecode |-
fucofvalg.w φ W = D Func E × C Func D
Assertion fucofvalg Could not format assertion : No typesetting found for |- ( ph -> .o. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 fucofvalg.p φ P U
2 fucofvalg.c φ 1 st P = C
3 fucofvalg.d φ 2 nd P = D
4 fucofvalg.e φ E V
5 fucofvalg.o Could not format ( ph -> ( P o.F E ) = .o. ) : No typesetting found for |- ( ph -> ( P o.F E ) = .o. ) with typecode |-
6 fucofvalg.w φ W = D Func E × C Func D
7 df-fuco Could not format o.F = ( p e. _V , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ [_ ( ( d Func e ) X. ( c Func d ) ) / w ]_ <. ( o.func |` w ) , ( u e. w , v e. w |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( d Nat e ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( c Nat d ) ( 2nd ` v ) ) |-> ( x e. ( Base ` c ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` e ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) : No typesetting found for |- o.F = ( p e. _V , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ [_ ( ( d Func e ) X. ( c Func d ) ) / w ]_ <. ( o.func |` w ) , ( u e. w , v e. w |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( d Nat e ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( c Nat d ) ( 2nd ` v ) ) |-> ( x e. ( Base ` c ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` e ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |-
8 7 a1i Could not format ( ph -> o.F = ( p e. _V , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ [_ ( ( d Func e ) X. ( c Func d ) ) / w ]_ <. ( o.func |` w ) , ( u e. w , v e. w |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( d Nat e ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( c Nat d ) ( 2nd ` v ) ) |-> ( x e. ( Base ` c ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` e ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) ) : No typesetting found for |- ( ph -> o.F = ( p e. _V , e e. _V |-> [_ ( 1st ` p ) / c ]_ [_ ( 2nd ` p ) / d ]_ [_ ( ( d Func e ) X. ( c Func d ) ) / w ]_ <. ( o.func |` w ) , ( u e. w , v e. w |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( d Nat e ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( c Nat d ) ( 2nd ` v ) ) |-> ( x e. ( Base ` c ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` e ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) ) with typecode |-
9 fvexd φ p = P e = E 1 st p V
10 simprl φ p = P e = E p = P
11 10 fveq2d φ p = P e = E 1 st p = 1 st P
12 2 adantr φ p = P e = E 1 st P = C
13 11 12 eqtrd φ p = P e = E 1 st p = C
14 fvexd φ p = P e = E c = C 2 nd p V
15 simplrl φ p = P e = E c = C p = P
16 15 fveq2d φ p = P e = E c = C 2 nd p = 2 nd P
17 3 ad2antrr φ p = P e = E c = C 2 nd P = D
18 16 17 eqtrd φ p = P e = E c = C 2 nd p = D
19 simpr φ p = P e = E c = C d = D d = D
20 simpllr φ p = P e = E c = C d = D p = P e = E
21 20 simprd φ p = P e = E c = C d = D e = E
22 19 21 oveq12d φ p = P e = E c = C d = D d Func e = D Func E
23 simplr φ p = P e = E c = C d = D c = C
24 23 19 oveq12d φ p = P e = E c = C d = D c Func d = C Func D
25 22 24 xpeq12d φ p = P e = E c = C d = D d Func e × c Func d = D Func E × C Func D
26 ovexd φ p = P e = E c = C d = D D Func E V
27 ovexd φ p = P e = E c = C d = D C Func D V
28 26 27 xpexd φ p = P e = E c = C d = D D Func E × C Func D V
29 25 28 eqeltrd φ p = P e = E c = C d = D d Func e × c Func d V
30 6 ad3antrrr φ p = P e = E c = C d = D W = D Func E × C Func D
31 25 30 eqtr4d φ p = P e = E c = C d = D d Func e × c Func d = W
32 simpr φ p = P e = E c = C d = D w = W w = W
33 32 reseq2d φ p = P e = E c = C d = D w = W func w = func W
34 simplr φ p = P e = E c = C d = D w = W d = D
35 21 adantr φ p = P e = E c = C d = D w = W e = E
36 34 35 oveq12d φ p = P e = E c = C d = D w = W d Nat e = D Nat E
37 36 oveqd φ p = P e = E c = C d = D w = W 1 st u d Nat e 1 st v = 1 st u D Nat E 1 st v
38 simpllr φ p = P e = E c = C d = D w = W c = C
39 38 34 oveq12d φ p = P e = E c = C d = D w = W c Nat d = C Nat D
40 39 oveqd φ p = P e = E c = C d = D w = W 2 nd u c Nat d 2 nd v = 2 nd u C Nat D 2 nd v
41 38 fveq2d φ p = P e = E c = C d = D w = W Base c = Base C
42 35 fveq2d φ p = P e = E c = C d = D w = W comp e = comp E
43 42 oveqd φ p = P e = E c = C d = D w = W k f x k m x comp e r m x = k f x k m x comp E r m x
44 43 oveqd φ p = P e = E c = C d = D w = W b m x k f x k m x comp e r m x f x l m x a x = b m x k f x k m x comp E r m x f x l m x a x
45 41 44 mpteq12dv φ p = P e = E c = C d = D w = W x Base c b m x k f x k m x comp e r m x f x l m x a x = x Base C b m x k f x k m x comp E r m x f x l m x a x
46 37 40 45 mpoeq123dv φ p = P e = E c = C d = D w = W b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
47 46 csbeq2dv φ p = P e = E c = C d = D w = W 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
48 47 csbeq2dv φ p = P e = E c = C d = D w = W 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
49 48 csbeq2dv φ p = P e = E c = C d = D w = W 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
50 49 csbeq2dv φ p = P e = E c = C d = D w = W 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
51 50 csbeq2dv φ p = P e = E c = C d = D w = W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
52 32 32 51 mpoeq123dv φ p = P e = E c = C d = D w = W u w , v w 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
53 33 52 opeq12d φ p = P e = E c = C d = D w = W func w u w , v w 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
54 29 31 53 csbied2 φ p = P e = E c = C d = D d Func e × c Func d / w func w u w , v w 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
55 14 18 54 csbied2 φ p = P e = E c = C 2 nd p / d d Func e × c Func d / w func w u w , v w 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
56 9 13 55 csbied2 φ p = P e = E 1 st p / c 2 nd p / d d Func e × c Func d / w func w u w , v w 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u d Nat e 1 st v , a 2 nd u c Nat d 2 nd v x Base c b m x k f x k m x comp e r m x f x l m x a x = func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x
57 1 elexd φ P V
58 4 elexd φ E V
59 opex func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x V
60 59 a1i φ func W u W , v W 1 st 2 nd u / f 1 st 1 st u / k 2 nd 1 st u / l 1 st 2 nd v / m 1 st 1 st v / r b 1 st u D Nat E 1 st v , a 2 nd u C Nat D 2 nd v x Base C b m x k f x k m x comp E r m x f x l m x a x V
61 8 56 57 58 60 ovmpod Could not format ( ph -> ( P o.F E ) = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) : No typesetting found for |- ( ph -> ( P o.F E ) = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |-
62 5 61 eqtr3d Could not format ( ph -> .o. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) : No typesetting found for |- ( ph -> .o. = <. ( o.func |` W ) , ( u e. W , v e. W |-> [_ ( 1st ` ( 2nd ` u ) ) / f ]_ [_ ( 1st ` ( 1st ` u ) ) / k ]_ [_ ( 2nd ` ( 1st ` u ) ) / l ]_ [_ ( 1st ` ( 2nd ` v ) ) / m ]_ [_ ( 1st ` ( 1st ` v ) ) / r ]_ ( b e. ( ( 1st ` u ) ( D Nat E ) ( 1st ` v ) ) , a e. ( ( 2nd ` u ) ( C Nat D ) ( 2nd ` v ) ) |-> ( x e. ( Base ` C ) |-> ( ( b ` ( m ` x ) ) ( <. ( k ` ( f ` x ) ) , ( k ` ( m ` x ) ) >. ( comp ` E ) ( r ` ( m ` x ) ) ) ( ( ( f ` x ) l ( m ` x ) ) ` ( a ` x ) ) ) ) ) ) >. ) with typecode |-