Metamath Proof Explorer


Theorem fun

Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004)

Ref Expression
Assertion fun F:ACG:BDAB=FG:ABCD

Proof

Step Hyp Ref Expression
1 fnun FFnAGFnBAB=FGFnAB
2 1 expcom AB=FFnAGFnBFGFnAB
3 rnun ranFG=ranFranG
4 unss12 ranFCranGDranFranGCD
5 3 4 eqsstrid ranFCranGDranFGCD
6 2 5 anim12d1 AB=FFnAGFnBranFCranGDFGFnABranFGCD
7 df-f F:ACFFnAranFC
8 df-f G:BDGFnBranGD
9 7 8 anbi12i F:ACG:BDFFnAranFCGFnBranGD
10 an4 FFnAranFCGFnBranGDFFnAGFnBranFCranGD
11 9 10 bitri F:ACG:BDFFnAGFnBranFCranGD
12 df-f FG:ABCDFGFnABranFGCD
13 6 11 12 3imtr4g AB=F:ACG:BDFG:ABCD
14 13 impcom F:ACG:BDAB=FG:ABCD