Metamath Proof Explorer


Theorem fun11

Description: Two ways of stating that A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of TakeutiZaring p. 24, who use the notation "Un_2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion fun11 FunA-1-1FunA-1xyzwxAyzAwx=zy=w

Proof

Step Hyp Ref Expression
1 dfbi2 x=zy=wx=zy=wy=wx=z
2 1 imbi2i xAyzAwx=zy=wxAyzAwx=zy=wy=wx=z
3 pm4.76 xAyzAwx=zy=wxAyzAwy=wx=zxAyzAwx=zy=wy=wx=z
4 bi2.04 xAyzAwx=zy=wx=zxAyzAwy=w
5 bi2.04 xAyzAwy=wx=zy=wxAyzAwx=z
6 4 5 anbi12i xAyzAwx=zy=wxAyzAwy=wx=zx=zxAyzAwy=wy=wxAyzAwx=z
7 2 3 6 3bitr2i xAyzAwx=zy=wx=zxAyzAwy=wy=wxAyzAwx=z
8 7 2albii xyxAyzAwx=zy=wxyx=zxAyzAwy=wy=wxAyzAwx=z
9 19.26-2 xyx=zxAyzAwy=wy=wxAyzAwx=zxyx=zxAyzAwy=wxyy=wxAyzAwx=z
10 alcom xyx=zxAyzAwy=wyxx=zxAyzAwy=w
11 breq1 x=zxAyzAy
12 11 anbi1d x=zxAyzAwzAyzAw
13 12 imbi1d x=zxAyzAwy=wzAyzAwy=w
14 13 equsalvw xx=zxAyzAwy=wzAyzAwy=w
15 14 albii yxx=zxAyzAwy=wyzAyzAwy=w
16 10 15 bitri xyx=zxAyzAwy=wyzAyzAwy=w
17 breq2 y=wxAyxAw
18 17 anbi1d y=wxAyzAwxAwzAw
19 18 imbi1d y=wxAyzAwx=zxAwzAwx=z
20 19 equsalvw yy=wxAyzAwx=zxAwzAwx=z
21 20 albii xyy=wxAyzAwx=zxxAwzAwx=z
22 16 21 anbi12i xyx=zxAyzAwy=wxyy=wxAyzAwx=zyzAyzAwy=wxxAwzAwx=z
23 8 9 22 3bitri xyxAyzAwx=zy=wyzAyzAwy=wxxAwzAwx=z
24 23 2albii zwxyxAyzAwx=zy=wzwyzAyzAwy=wxxAwzAwx=z
25 19.26-2 zwyzAyzAwy=wxxAwzAwx=zzwyzAyzAwy=wzwxxAwzAwx=z
26 24 25 bitr2i zwyzAyzAwy=wzwxxAwzAwx=zzwxyxAyzAwx=zy=w
27 fun2cnv FunA-1-1z*yzAy
28 breq2 y=wzAyzAw
29 28 mo4 *yzAyywzAyzAwy=w
30 29 albii z*yzAyzywzAyzAwy=w
31 alcom ywzAyzAwy=wwyzAyzAwy=w
32 31 albii zywzAyzAwy=wzwyzAyzAwy=w
33 27 30 32 3bitri FunA-1-1zwyzAyzAwy=w
34 funcnv2 FunA-1w*xxAw
35 breq1 x=zxAwzAw
36 35 mo4 *xxAwxzxAwzAwx=z
37 36 albii w*xxAwwxzxAwzAwx=z
38 alcom xzxAwzAwx=zzxxAwzAwx=z
39 38 albii wxzxAwzAwx=zwzxxAwzAwx=z
40 alcom wzxxAwzAwx=zzwxxAwzAwx=z
41 39 40 bitri wxzxAwzAwx=zzwxxAwzAwx=z
42 34 37 41 3bitri FunA-1zwxxAwzAwx=z
43 33 42 anbi12i FunA-1-1FunA-1zwyzAyzAwy=wzwxxAwzAwx=z
44 alrot4 xyzwxAyzAwx=zy=wzwxyxAyzAwx=zy=w
45 26 43 44 3bitr4i FunA-1-1FunA-1xyzwxAyzAwx=zy=w