Metamath Proof Explorer


Theorem fununi

Description: The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004)

Ref Expression
Assertion fununi fAFunfgAfggfFunA

Proof

Step Hyp Ref Expression
1 funrel FunfRelf
2 1 adantr FunfgAfggfRelf
3 2 ralimi fAFunfgAfggffARelf
4 reluni RelAfARelf
5 3 4 sylibr fAFunfgAfggfRelA
6 r19.28v FunfgAfggfgAFunffggf
7 6 ralimi fAFunfgAfggffAgAFunffggf
8 ssel wvxywxyv
9 8 anim1d wvxywxzvxyvxzv
10 dffun4 FunvRelvxyzxyvxzvy=z
11 10 simprbi Funvxyzxyvxzvy=z
12 11 19.21bbi Funvzxyvxzvy=z
13 12 19.21bi Funvxyvxzvy=z
14 9 13 syl9r Funvwvxywxzvy=z
15 14 adantl FunwFunvwvxywxzvy=z
16 ssel vwxzvxzw
17 16 anim2d vwxywxzvxywxzw
18 dffun4 FunwRelwxyzxywxzwy=z
19 18 simprbi Funwxyzxywxzwy=z
20 19 19.21bbi Funwzxywxzwy=z
21 20 19.21bi Funwxywxzwy=z
22 17 21 syl9r Funwvwxywxzvy=z
23 22 adantr FunwFunvvwxywxzvy=z
24 15 23 jaod FunwFunvwvvwxywxzvy=z
25 24 imp FunwFunvwvvwxywxzvy=z
26 25 2ralimi wAvAFunwFunvwvvwwAvAxywxzvy=z
27 funeq f=wFunfFunw
28 sseq1 f=wfgwg
29 sseq2 f=wgfgw
30 28 29 orbi12d f=wfggfwggw
31 27 30 anbi12d f=wFunffggfFunwwggw
32 sseq2 g=vwgwv
33 sseq1 g=vgwvw
34 32 33 orbi12d g=vwggwwvvw
35 34 anbi2d g=vFunwwggwFunwwvvw
36 31 35 cbvral2vw fAgAFunffggfwAvAFunwwvvw
37 ralcom fAgAFunffggfgAfAFunffggf
38 orcom fggfgffg
39 sseq1 g=wgfwf
40 sseq2 g=wfgfw
41 39 40 orbi12d g=wgffgwffw
42 38 41 bitrid g=wfggfwffw
43 42 anbi2d g=wFunffggfFunfwffw
44 funeq f=vFunfFunv
45 sseq2 f=vwfwv
46 sseq1 f=vfwvw
47 45 46 orbi12d f=vwffwwvvw
48 44 47 anbi12d f=vFunfwffwFunvwvvw
49 43 48 cbvral2vw gAfAFunffggfwAvAFunvwvvw
50 37 49 bitri fAgAFunffggfwAvAFunvwvvw
51 36 50 anbi12i fAgAFunffggffAgAFunffggfwAvAFunwwvvwwAvAFunvwvvw
52 anidm fAgAFunffggffAgAFunffggffAgAFunffggf
53 anandir FunwFunvwvvwFunwwvvwFunvwvvw
54 53 2ralbii wAvAFunwFunvwvvwwAvAFunwwvvwFunvwvvw
55 r19.26-2 wAvAFunwwvvwFunvwvvwwAvAFunwwvvwwAvAFunvwvvw
56 54 55 bitr2i wAvAFunwwvvwwAvAFunvwvvwwAvAFunwFunvwvvw
57 51 52 56 3bitr3i fAgAFunffggfwAvAFunwFunvwvvw
58 eluni xyAwxywwA
59 eluni xzAvxzvvA
60 58 59 anbi12i xyAxzAwxywwAvxzvvA
61 exdistrv wvxywwAxzvvAwxywwAvxzvvA
62 an4 xywwAxzvvAxywxzvwAvA
63 62 biancomi xywwAxzvvAwAvAxywxzv
64 63 2exbii wvxywwAxzvvAwvwAvAxywxzv
65 60 61 64 3bitr2i xyAxzAwvwAvAxywxzv
66 65 imbi1i xyAxzAy=zwvwAvAxywxzvy=z
67 19.23v wvwAvAxywxzvy=zwvwAvAxywxzvy=z
68 r2al wAvAxywxzvy=zwvwAvAxywxzvy=z
69 impexp wAvAxywxzvy=zwAvAxywxzvy=z
70 69 2albii wvwAvAxywxzvy=zwvwAvAxywxzvy=z
71 19.23v vwAvAxywxzvy=zvwAvAxywxzvy=z
72 71 albii wvwAvAxywxzvy=zwvwAvAxywxzvy=z
73 68 70 72 3bitr2ri wvwAvAxywxzvy=zwAvAxywxzvy=z
74 66 67 73 3bitr2i xyAxzAy=zwAvAxywxzvy=z
75 26 57 74 3imtr4i fAgAFunffggfxyAxzAy=z
76 75 alrimiv fAgAFunffggfzxyAxzAy=z
77 76 alrimivv fAgAFunffggfxyzxyAxzAy=z
78 7 77 syl fAFunfgAfggfxyzxyAxzAy=z
79 dffun4 FunARelAxyzxyAxzAy=z
80 5 78 79 sylanbrc fAFunfgAfggfFunA