| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
⊢ ( Fun 𝑓 → Rel 𝑓 ) |
| 2 |
1
|
adantr |
⊢ ( ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Rel 𝑓 ) |
| 3 |
2
|
ralimi |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
| 4 |
|
reluni |
⊢ ( Rel ∪ 𝐴 ↔ ∀ 𝑓 ∈ 𝐴 Rel 𝑓 ) |
| 5 |
3 4
|
sylibr |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Rel ∪ 𝐴 ) |
| 6 |
|
r19.28v |
⊢ ( ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 7 |
6
|
ralimi |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 8 |
|
ssel |
⊢ ( 𝑤 ⊆ 𝑣 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 → 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ) ) |
| 9 |
8
|
anim1d |
⊢ ( 𝑤 ⊆ 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 10 |
|
dffun4 |
⊢ ( Fun 𝑣 ↔ ( Rel 𝑣 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 11 |
10
|
simprbi |
⊢ ( Fun 𝑣 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 12 |
11
|
19.21bbi |
⊢ ( Fun 𝑣 → ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 13 |
12
|
19.21bi |
⊢ ( Fun 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑣 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 14 |
9 13
|
syl9r |
⊢ ( Fun 𝑣 → ( 𝑤 ⊆ 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( 𝑤 ⊆ 𝑣 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 16 |
|
ssel |
⊢ ( 𝑣 ⊆ 𝑤 → ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 → 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) ) |
| 17 |
16
|
anim2d |
⊢ ( 𝑣 ⊆ 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) ) ) |
| 18 |
|
dffun4 |
⊢ ( Fun 𝑤 ↔ ( Rel 𝑤 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) ) |
| 19 |
18
|
simprbi |
⊢ ( Fun 𝑤 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) |
| 20 |
19
|
19.21bbi |
⊢ ( Fun 𝑤 → ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) |
| 21 |
20
|
19.21bi |
⊢ ( Fun 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑤 ) → 𝑦 = 𝑧 ) ) |
| 22 |
17 21
|
syl9r |
⊢ ( Fun 𝑤 → ( 𝑣 ⊆ 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( 𝑣 ⊆ 𝑤 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 24 |
15 23
|
jaod |
⊢ ( ( Fun 𝑤 ∧ Fun 𝑣 ) → ( ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 26 |
25
|
2ralimi |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 27 |
|
funeq |
⊢ ( 𝑓 = 𝑤 → ( Fun 𝑓 ↔ Fun 𝑤 ) ) |
| 28 |
|
sseq1 |
⊢ ( 𝑓 = 𝑤 → ( 𝑓 ⊆ 𝑔 ↔ 𝑤 ⊆ 𝑔 ) ) |
| 29 |
|
sseq2 |
⊢ ( 𝑓 = 𝑤 → ( 𝑔 ⊆ 𝑓 ↔ 𝑔 ⊆ 𝑤 ) ) |
| 30 |
28 29
|
orbi12d |
⊢ ( 𝑓 = 𝑤 → ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ) ) |
| 31 |
27 30
|
anbi12d |
⊢ ( 𝑓 = 𝑤 → ( ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ) ) ) |
| 32 |
|
sseq2 |
⊢ ( 𝑔 = 𝑣 → ( 𝑤 ⊆ 𝑔 ↔ 𝑤 ⊆ 𝑣 ) ) |
| 33 |
|
sseq1 |
⊢ ( 𝑔 = 𝑣 → ( 𝑔 ⊆ 𝑤 ↔ 𝑣 ⊆ 𝑤 ) ) |
| 34 |
32 33
|
orbi12d |
⊢ ( 𝑔 = 𝑣 → ( ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ↔ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 35 |
34
|
anbi2d |
⊢ ( 𝑔 = 𝑣 → ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑤 ) ) ↔ ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 36 |
31 35
|
cbvral2vw |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 37 |
|
ralcom |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑔 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 38 |
|
orcom |
⊢ ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑔 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑔 ) ) |
| 39 |
|
sseq1 |
⊢ ( 𝑔 = 𝑤 → ( 𝑔 ⊆ 𝑓 ↔ 𝑤 ⊆ 𝑓 ) ) |
| 40 |
|
sseq2 |
⊢ ( 𝑔 = 𝑤 → ( 𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ 𝑤 ) ) |
| 41 |
39 40
|
orbi12d |
⊢ ( 𝑔 = 𝑤 → ( ( 𝑔 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑔 ) ↔ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ) |
| 42 |
38 41
|
bitrid |
⊢ ( 𝑔 = 𝑤 → ( ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ↔ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ) |
| 43 |
42
|
anbi2d |
⊢ ( 𝑔 = 𝑤 → ( ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ( Fun 𝑓 ∧ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ) ) |
| 44 |
|
funeq |
⊢ ( 𝑓 = 𝑣 → ( Fun 𝑓 ↔ Fun 𝑣 ) ) |
| 45 |
|
sseq2 |
⊢ ( 𝑓 = 𝑣 → ( 𝑤 ⊆ 𝑓 ↔ 𝑤 ⊆ 𝑣 ) ) |
| 46 |
|
sseq1 |
⊢ ( 𝑓 = 𝑣 → ( 𝑓 ⊆ 𝑤 ↔ 𝑣 ⊆ 𝑤 ) ) |
| 47 |
45 46
|
orbi12d |
⊢ ( 𝑓 = 𝑣 → ( ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ↔ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 48 |
44 47
|
anbi12d |
⊢ ( 𝑓 = 𝑣 → ( ( Fun 𝑓 ∧ ( 𝑤 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑤 ) ) ↔ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 49 |
43 48
|
cbvral2vw |
⊢ ( ∀ 𝑔 ∈ 𝐴 ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 50 |
37 49
|
bitri |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 51 |
36 50
|
anbi12i |
⊢ ( ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) ↔ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 52 |
|
anidm |
⊢ ( ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ∧ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) ↔ ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ) |
| 53 |
|
anandir |
⊢ ( ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ↔ ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 54 |
53
|
2ralbii |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 55 |
|
r19.26-2 |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ↔ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ) |
| 56 |
54 55
|
bitr2i |
⊢ ( ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑤 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ∧ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( Fun 𝑣 ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 57 |
51 52 56
|
3bitr3i |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( Fun 𝑤 ∧ Fun 𝑣 ) ∧ ( 𝑤 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑤 ) ) ) |
| 58 |
|
eluni |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑤 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ) |
| 59 |
|
eluni |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) |
| 60 |
58 59
|
anbi12i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) ↔ ( ∃ 𝑤 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ) |
| 61 |
|
exdistrv |
⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ( ∃ 𝑤 ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ∃ 𝑣 ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ) |
| 62 |
|
an4 |
⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ) ) |
| 63 |
62
|
biancomi |
⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 64 |
63
|
2exbii |
⊢ ( ∃ 𝑤 ∃ 𝑣 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴 ) ) ↔ ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 65 |
60 61 64
|
3bitr2i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) ↔ ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) ) |
| 66 |
65
|
imbi1i |
⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) |
| 67 |
|
19.23v |
⊢ ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑤 ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) |
| 68 |
|
r2al |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∀ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 69 |
|
impexp |
⊢ ( ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 70 |
69
|
2albii |
⊢ ( ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∀ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) ) |
| 71 |
|
19.23v |
⊢ ( ∀ 𝑣 ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) |
| 72 |
71
|
albii |
⊢ ( ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ) |
| 73 |
68 70 72
|
3bitr2ri |
⊢ ( ∀ 𝑤 ( ∃ 𝑣 ( ( 𝑤 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 74 |
66 67 73
|
3bitr2i |
⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝑤 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝑣 ) → 𝑦 = 𝑧 ) ) |
| 75 |
26 57 74
|
3imtr4i |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 76 |
75
|
alrimiv |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 77 |
76
|
alrimivv |
⊢ ( ∀ 𝑓 ∈ 𝐴 ∀ 𝑔 ∈ 𝐴 ( Fun 𝑓 ∧ ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 78 |
7 77
|
syl |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) |
| 79 |
|
dffun4 |
⊢ ( Fun ∪ 𝐴 ↔ ( Rel ∪ 𝐴 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝐴 ∧ 〈 𝑥 , 𝑧 〉 ∈ ∪ 𝐴 ) → 𝑦 = 𝑧 ) ) ) |
| 80 |
5 78 79
|
sylanbrc |
⊢ ( ∀ 𝑓 ∈ 𝐴 ( Fun 𝑓 ∧ ∀ 𝑔 ∈ 𝐴 ( 𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓 ) ) → Fun ∪ 𝐴 ) |