Metamath Proof Explorer


Theorem funcestrcsetclem5

Description: Lemma 5 for funcestrcsetc . (Contributed by AV, 23-Mar-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
funcestrcsetc.m M=BaseX
funcestrcsetc.n N=BaseY
Assertion funcestrcsetclem5 φXBYBXGY=INM

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 funcestrcsetc.m M=BaseX
9 funcestrcsetc.n N=BaseY
10 7 adantr φXBYBG=xB,yBIBaseyBasex
11 fveq2 y=YBasey=BaseY
12 fveq2 x=XBasex=BaseX
13 11 12 oveqan12rd x=Xy=YBaseyBasex=BaseYBaseX
14 9 8 oveq12i NM=BaseYBaseX
15 13 14 eqtr4di x=Xy=YBaseyBasex=NM
16 15 reseq2d x=Xy=YIBaseyBasex=INM
17 16 adantl φXBYBx=Xy=YIBaseyBasex=INM
18 simprl φXBYBXB
19 simprr φXBYBYB
20 ovexd φXBYBNMV
21 20 resiexd φXBYBINMV
22 10 17 18 19 21 ovmpod φXBYBXGY=INM