Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | funcnvtp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp2 | |
|
3 | simp1 | |
|
4 | funcnvpr | |
|
5 | 1 2 3 4 | syl2an3an | |
6 | funcnvsn | |
|
7 | 6 | a1i | |
8 | df-rn | |
|
9 | rnpropg | |
|
10 | 8 9 | eqtr3id | |
11 | 10 | 3adant3 | |
12 | df-rn | |
|
13 | rnsnopg | |
|
14 | 12 13 | eqtr3id | |
15 | 14 | 3ad2ant3 | |
16 | 11 15 | ineq12d | |
17 | disjprsn | |
|
18 | 17 | 3adant1 | |
19 | 16 18 | sylan9eq | |
20 | funun | |
|
21 | 5 7 19 20 | syl21anc | |
22 | df-tp | |
|
23 | 22 | cnveqi | |
24 | cnvun | |
|
25 | 23 24 | eqtri | |
26 | 25 | funeqi | |
27 | 21 26 | sylibr | |