Metamath Proof Explorer


Theorem funcnvtp

Description: The converse triple of ordered pairs is a function if the second members are pairwise different. Note that the second members need not be sets. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion funcnvtp AUCVEWBDBFDFFunABCDEF-1

Proof

Step Hyp Ref Expression
1 simp1 AUCVEWAU
2 simp2 AUCVEWCV
3 simp1 BDBFDFBD
4 funcnvpr AUCVBDFunABCD-1
5 1 2 3 4 syl2an3an AUCVEWBDBFDFFunABCD-1
6 funcnvsn FunEF-1
7 6 a1i AUCVEWBDBFDFFunEF-1
8 df-rn ranABCD=domABCD-1
9 rnpropg AUCVranABCD=BD
10 8 9 eqtr3id AUCVdomABCD-1=BD
11 10 3adant3 AUCVEWdomABCD-1=BD
12 df-rn ranEF=domEF-1
13 rnsnopg EWranEF=F
14 12 13 eqtr3id EWdomEF-1=F
15 14 3ad2ant3 AUCVEWdomEF-1=F
16 11 15 ineq12d AUCVEWdomABCD-1domEF-1=BDF
17 disjprsn BFDFBDF=
18 17 3adant1 BDBFDFBDF=
19 16 18 sylan9eq AUCVEWBDBFDFdomABCD-1domEF-1=
20 funun FunABCD-1FunEF-1domABCD-1domEF-1=FunABCD-1EF-1
21 5 7 19 20 syl21anc AUCVEWBDBFDFFunABCD-1EF-1
22 df-tp ABCDEF=ABCDEF
23 22 cnveqi ABCDEF-1=ABCDEF-1
24 cnvun ABCDEF-1=ABCD-1EF-1
25 23 24 eqtri ABCDEF-1=ABCD-1EF-1
26 25 funeqi FunABCDEF-1FunABCD-1EF-1
27 21 26 sylibr AUCVEWBDBFDFFunABCDEF-1