Metamath Proof Explorer


Theorem functhinc

Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered ( catprs2 ). (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinc.b B = Base D
functhinc.c C = Base E
functhinc.h H = Hom D
functhinc.j J = Hom E
functhinc.d φ D Cat
functhinc.e No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
functhinc.f φ F : B C
functhinc.k K = x B , y B x H y × F x J F y
functhinc.1 φ z B w B F z J F w = z H w =
Assertion functhinc φ F D Func E G G = K

Proof

Step Hyp Ref Expression
1 functhinc.b B = Base D
2 functhinc.c C = Base E
3 functhinc.h H = Hom D
4 functhinc.j J = Hom E
5 functhinc.d φ D Cat
6 functhinc.e Could not format ( ph -> E e. ThinCat ) : No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
7 functhinc.f φ F : B C
8 functhinc.k K = x B , y B x H y × F x J F y
9 functhinc.1 φ z B w B F z J F w = z H w =
10 eqid Id D = Id D
11 eqid Id E = Id E
12 eqid comp D = comp D
13 eqid comp E = comp E
14 6 thinccd φ E Cat
15 1 2 3 4 10 11 12 13 5 14 isfunc φ F D Func E G F : B C G c B × B F 1 st c J F 2 nd c H c a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
16 3anass F : B C G c B × B F 1 st c J F 2 nd c H c a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f F : B C G c B × B F 1 st c J F 2 nd c H c a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
17 15 16 bitrdi φ F D Func E G F : B C G c B × B F 1 st c J F 2 nd c H c a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
18 7 17 mpbirand φ F D Func E G G c B × B F 1 st c J F 2 nd c H c a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
19 funcf2lem G c B × B F 1 st c J F 2 nd c H c G V G Fn B × B v B u B v G u : v H u F v J F u
20 simprl φ v B u B v B
21 simprr φ v B u B u B
22 9 adantr φ v B u B z B w B F z J F w = z H w =
23 20 21 22 functhinclem2 φ v B u B F v J F u = v H u =
24 1 2 3 4 6 7 8 23 functhinclem1 φ G V G Fn B × B v B u B v G u : v H u F v J F u G = K
25 19 24 syl5bb φ G c B × B F 1 st c J F 2 nd c H c G = K
26 25 anbi1d φ G c B × B F 1 st c J F 2 nd c H c a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f G = K a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
27 18 26 bitrd φ F D Func E G G = K a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
28 1 2 3 4 5 6 7 8 9 10 11 12 13 functhinclem4 φ G = K a B a G a Id D a = Id E F a b B c B f a H b g b H c a G c g a b comp D c f = b G c g F a F b comp E F c a G b f
29 27 28 mpbiran3d φ F D Func E G G = K